ELEMENTI**ST**RUTTURALI

INDICE

1.	Generalità	7
	1.1 Copyright	7
	1.2 Riconoscimenti	7
	1.3 Licenza d'uso	7
	1.4 Responsabilità	8
2.	Installazione del programma	9
	2.1 Requisiti del sistema	9
	2.2 Installazione	9
	2.3 Estensione delle abilitazioni	10
3.	Descrizione del programma	11
	3.1 Generalità	11
	3.2 Documenti generati	11
	3.3 Interfaccia	12
	3.3.1 Menù-File	13
	3.3.2 Menu-Struttura	14
	3.3.5 Mellu-Vista 3.3.4 Menù-Onzioni	15
	3.3.5 Menù-Ajuto	16
	3.4 Impostazioni personali	17
	3.5 Visualizzazioni	20
	3.5.1 Vista Diagrammi	20
	3.5.2 Vista Armature	20
	3.5.3 Vista Disegni	20
	3.5.4 Vista Relazione	21
	3.5.5 Vista Pendio	21
4.	Modulo SEZIONI	22
	4.1 Avvio del modulo Sezioni	22
	4.2 Scelta della sezione	23
	4.2.1 Disegno libero di una sezione	23
	4.2.2 Sezioni parametriche	23
	4.2.3 Sezioni normalizzate	24
	4.2.4 Sezioni importate	24
	4.3 Modifica della sezione	24
	4.3.1 Modifiche per immissione coordinate	24
	4.3.2 Modifiche grafiche con mouse	25

5.

6.

4.3.3 Spostare e ruotare una sezione	26
4.4 Salvataggio di una sezione	26
4.5 Impostazioni personali	27
4.6 Inserimento dell'armatura nelle sezioni in c.a.	28
4.7 Verifica sezione con le Tensioni Ammissibili	29
4.7.1 Sezioni in calcestruzzo	29
4.7.2 Sezioni in acciaio	30
4.7.3 Sezioni in legno	31
4.8 Verifica sezione agli Stati Limite	32
4.8.1 Sezioni in calcestruzzo	33
4.8.2 Sezioni in acciaio	34
4.8.3 Sezioni in legno	34
4.9 Relazione di calcolo	35
4.10 Esempi di verifica	36
4.10.1 VERIFICA ALLE T.A. DI SEZIONE RETTANGOLARE IN C.A. PRESSO-INFLESSA	36
4.10.2 VERIFICA ALLO S.L.U. DI SEZIONE A T IN C.A. SOGGETTA A FLESSIONE E TAGLIO	38
4.10.3 VERIFICA ALLO S.L.E. DI SEZIONE RETTANGOLARE IN C.A.	40
4.10.4 VERIFICA ALLE 1.A. DI SEZIONE IN ACCIAIO 4.10.5 VERIFICA SEZIONE IN LECNO ACLUS L	42
1.10.5 VERITICA SELIONE IN ELGINO AGEI S.E.	15
Modulo SOLAIO	46
5.1 Congralità	16
5.2 Caratteristiche di input e output dei dati	40
5.2.1 Dati Elastici	47
5.2.2 Dati Geometrici	48
5.2.3 Luci e Carichi	49
5.2.4 Risultati dell'elaborazione	49
5.3 Opzioni Solaio	50
5.3.1 Sezione Armatura	50
5.3.2 Sezione Geometria	51
5.3.3 Sezione Peso Proprio	51
5.3.4 Sezione Quotature	52
5.4 Diagrammi e schemi di carico	52
5.5 Armature	53
5.5.1 Predisposizione automatica delle armature	53
5.5.2 Disposizione manuale e mounica delle armature	53
5.5.4 La barra delle armature	54
5.5.5 Funzioni sulla barra di stato	55
5.5.6 Finestra proprietà dei ferri longitudinali	56
5.5.7 Modificare senza la finestra proprietà	58
5.6 Esempio di calcolo	59
Modulo TRAVE CONTINUA	64
6.1 Generalità	64
6.2 Caratteristiche di input e output dei dati	65
6.2.1 Dati Elastici	65
6.2.2 Dati Geometrici e Peso Proprio	66
6.2.3 Definizione Appoggi	67

7.

9.	Modulo FORO	111
	8.4 Esempio di calcolo	107
	8.3.4 Sezione Quotature	107
	8.3.3 Sezione Peso Proprio	106
	8.3.2 Sezione Geometria	106
	8.3.1 Sezione Armatura	105
	8.3 Opzioni SbaLat	105
	8.2.3 Geometria Solaio	104
	8.2.2 Geometria Sbalzo e Carichi	102
	8.2.1 Dati Flastici	101
	8.1 Generalita 8.2 Caratteristiche di input e output dei dati	101
	0.1 Commulity	104
8.	Modulo SBALZO LATERALE	101
	7.4 Esempio di calcolo	97
	7.3.4 Sezione Quotature	97
	7.3.3 Sezione Peso Proprio	96
	7.3.2 Sezione Geometria	96
	7.3.1 Sezione Armatura	95
	7.3 Opzioni SbAng	95
	7.2.3 Geometria Solaio e Carichi	94
	7.2.2 Geometria Shalzo	92
	7.2 Caratteristicie un input e output dei dati	92
	7.1 Generalita 7.2 Caratteristiche di input e output dei dati	91 02
<i>.</i>	7.1 Conoralità	01
7	Modulo SBALZO D'ANGOLO	01
	6.6 Esempio di calcolo	84
	6.5.8 Modificare senza la finestra proprietà	82
	6.5.7 Finestra proprietà delle staffe	80
	6.5.6 Finestra proprietà dei ferri longitudinali	77
	6.5.4 La Dalla delle al mature 6.5.5 Funzioni sulla barra di stato	7 5 77
	6.5.3 Disposizione manuale e modifica delle armature	/5 75
	6.5.2 Predisposizione automatica delle armature	74
	6.5.1 La finestra di interfaccia delle armature	74
	6.5 Armature	74
	6.4 Diagrammi e schemi di carico	73
	6.3.4 Sezione Quotature	73
	6.3.3 Sezione Carichi Fissi	72
	6.3.2 Sezione Divisioni Luce	72
	6.3.1 Sezione Armatura	71
	6.3 Opzioni TraCon	71
	6.2.8 Risultati dell'elaborazione	70
	6.2.7 Connie Concentrate	70
	6.2.5 Carichi Distribuiti 6.2.6 Carichi Concentrati	68 69
	6.2.4 Tipo di Carichi	68

10.

9.1	Metodo di calcolo	111
ç	9.1.1 Schema statico	111
Ģ	9.1.2 Combinazione dei carichi	112
Ģ	9.1.3 Controllo della rigidezza	113
	9.1.3.1 Rigidezza Flessionale	114
	9.1.3.2 Rigidezza Assiale	114
9.2	Interfaccia	115
	9.2.1 Modalità di calcolo	116
	9.2.2 Caratteristiche di input e output dei dati	116
	9.2.3 Dati Elastici	117
	9.2.4 Geometria del Foro	118
	9.2.5 Geometria Solaio e Carichi	120
9.3	Opzioni Foro	122
	9.3.1 Sezione Armatura	122
	9.3.2 Sezione Geometria	123
	9.3.4 Sezione Ouotature	123
94	Finestra Armature	121
2.1	941 Vista Pianta Foro	121
	942 Vista Sezione Trave	120
	9.4.3 Vista Staffe	120
	944 Vista Armatura Foro Trave Superiore	120
	9.4.5 Vista Armatura Foro Trave Superiore	120
	9.4.6 Vista Armatura Foro Trave Inferiore	120
	9.4.7 Vista Armatura Foro Trave Destra	120
95	Vista Relazione	120
9.5	Vista Reactivi	129
9.0	Vista Diagrammi	12)
9.7	Fsempio di calcolo di un foro	130
7.0		151
Modu	lo TRAVE ROVESCIA	142
10.1	1 Interfaccia	142
10.2	2 Caratteristiche di input e output dei dati	142
1	10.2.1 Dati Elastici	143
1	10.2.2 Dati Geometrici e Peso Proprio	144
]	10.2.3 Appoggi e Carichi Concentrati	145
10.3	3 Opzioni TraRov	146
]	10.3.1 Sezione Armatura	146
1	10.3.2 Sezione Divisioni Luce	147 147
10	1. Diagrammi e schemi di carico	147
10.4	f Diagrannin e schenn ur carico 5 Armature	140
10.3	10.5.1 La finestra di interfaccia delle armature	140
1	10.5.2 Predisposizione automatica delle armature	149
1	10.5.3 Disposizione manuale e modifica delle armature	149
1	10.5.4 La barra delle armature	150
1	10.5.5 Funzioni sulla barra di stato	151
1	10.5.0 Finestra proprieta del ferri longitudinali	151 1E4
	io.o., i mesua proprieta delle stane	154

	10.5.8 Modificare senza la finestra proprietà	156
	10.6 Esempio di calcolo	158
11.	Modulo PLINTO DIRETTO	164
	11.1 Generalità	164
	11.2 Caratteristiche di input e output dei dati	165
	11.2.1 Dati Elastici	165
	11.2.2 Dati Geometrici	166
	11.2.3 Dati Terreno	167
	11.2.4 Carichi	168
	11.3 Opzioni PliDir	169
	11.3.1 Sezione Armatura	169
	11.3.2 Sezione Quotature	169
	11.4 Esempio di calcolo	170
12.	Modulo PILASTRI	173
	12.1 Generalità	173
	12.2 Caratteristiche di input e output dei dati	173
	12.2.1 Dati Elastici	174
	12.2.2 Dati Geometrici e Carichi	175
	12.3 Opzioni Pilastri	176
	12.3.1 Sezione Armatura	176
	12.3.2 Sezione Quotature	176
	12.4 Esempio di calcolo	177
13.	Modulo SCALA A SOLETTA RAMPANTE	180
	13.1 Generalità	180
	13.2 Caratteristiche di input e output dei dati	181
	13.2.1 Dati Elastici	181
	13.2.2 Dati Geometrici	182
	13.2.3 Carichi	183
	13.3 Opzioni ScaRam	184
	13.3.1 Sezione Armatura	184
	13.3.2 Sezione Geometria	185
	13.3.3 Sezione Peso Proprio	185
	13.3.4 Sezione Quotature	186
	13.3.5 Sezione Vincoli	186
	13.4 Diagrammi e schemi di carico	187
	13.5 Armature	187
	13.5.1 Predisposizione automatica delle armature	187
	13.5.2 Disposizione manuale e modifica delle armature	188
	13.5.5 La finesti a un internación dene armature 13.5.4 La barra delle armature	100 100
	13.5.5 Funzioni sulla harra di stato	189
	13.5.6 Finestra proprietà dei ferri longitudinali	189
	13.5.7 Modificare senza la finestra proprietà	192
	12 (Ecompie di celecte	102
	13.6 Esemplo di calcolo	193

14. Modulo SCALA CON TRAVE A GINOCCHIO	199
14.1 Generalità	199
14.2 Caratteristiche di input e output dei dati	200
14.2.1 Dati Elastici	200
14.2.2 Geometria	201
14.2.2.1 Scala	201
14.2.2.2 Pianerottolo	202
14.2.2.3 Trave a ginocchio	202
14.2.2.4 Trave testata dx	203
14.2.2.5 Trave testata sx	203
14.2.3 UdfiChi 14.2.2.1 Scolo	203
14.2.3.1 Stala 14.2.3.2 Solaio adiaconto	203
14.2.3.2 Solato adjacente 14.2.3.3 Trave a ginocchio	204
14.3 Onzioni ScaCin	201
14.2.1 Cariana Armatura	204
14.3.1 Sezione Geometria	205
14.3.3 Sezione Peso Proprio	205
14.3.4 Sezione Quotature	200
14.3.5 Sezione Vincoli	207
14.4 Diagrammi e schemi di carico	207
145 Armature	208
14.5.1 La finestra di interfaccia delle armature	200
14.5.2 Predisposizione automatica delle armature	209
14.5.3 Disposizione manuale e modifica delle armature	209
14.5.4 La barra delle armature	209
14.5.5 Funzioni sulla barra di stato	210
14.5.6 Finestra proprietà dei ferri longitudinali	211
14.5.7 Finestra proprietà delle staffe	213
14.5.8 Modificare senza la finestra proprietà	215
14.6 Esempio di calcolo	217
15. Modulo TELAIO PIANO	229
15.1 Avvio del modulo	229
15.2 Inserimento dei dati	230
15.2.1 Geometria e Materiali	230
15.2.2 Numerazione Pilastri	231
15.2.3 Traversi	231
15.2.4 Ritti	232
15.2.5 Carichi Verticali	233
15.2.6 Carichi Nodali 15.2.7 Carichi Orizzontali	233
15.2.7 Carleni Urizzontan	234
	234
15.3.1 Sezione Armatura	234
15.3.2 Sezione Carichi Fissi	235
15.3.3 Sezione Quotature	235
15.4 Esempio di calcolo	236

Capitolo

generalità

1.1 Copyright

Ogni componente del programma compreso il presente manuale sono protetti da copyright pertanto ne è concesso l'uso solo all'utente in modo non trasferibile.

È vietata qualsiasi tipo di riproduzione e diffusione del pacchetto ad eccezione della sola copia di backup da parte dell'intestatario della licenza d'uso e per soli motivi di sicurezza.

1.2 Riconoscimenti

WINDOWS è un marchio registrato della Microsoft Corporation;

AutoCAD è un marchio registrato della Autodesk AG.

1.3 Licenza d'uso

L'acquisto di uno o più moduli del programma comporta il conseguimento della sola licenza d'uso non esclusiva e non cedibile del programma. Tale licenza è concessa ai clienti alle seguenti condizioni generali:

- Il cliente acquisisce sul programma solo una licenza d'uso valida per l'installazione su una sola macchina.
- Il cliente non potrà alterare o rimuovere alcun marchio, nome commerciale, numero di serie o altre notifiche di riserva di diritti inseriti nel programma e/o sul suo supporto.
- La licenza d'uso del programma non comprende la facoltà di ottenerlo in formato sorgente, né di disporre della relativa documentazione di progetto, né del tracciato di eventuali files di dati presenti o creati dal programma.
- La verifica dell'idoneità del programma a ottenere certi risultati, la sua installazione, il suo uso e la sua gestione sono onere esclusivo del cliente.
- La licenza non potrà essere in alcun caso ceduta o sub licenziata dal cliente a terzi.

1.4 Responsabilità

I moduli di questo programma sono stati testati a lungo per rendere il più possibile affidabili e precisi i calcoli effettuati.

Rimane, comunque, all'utente la piena responsabilità sull'utilizzo dei risultati ottenuti con l'uso del programma e pertanto è tenuto a verificare personalmente tutti i risultati forniti dal programma prima dell'utilizzo degli stessi.

Capitolo

installazione del programma

2.1 Requisiti del sistema

Il programma Elest è eseguibile su tutti i sistemi Windows 98/2000/NT/XP/Vista/Seven. La risoluzione video consigliata è di 1024x768 pixels.

2.2 Installazione

Dalla barra di Windows con il mouse selezionare [**Start**] → [**Esegui**]. Cercare il percorso dove risiede il programma con l'opzione **Sfoglia** e lanciare il file SETUP.EXE per avviare il programma di installazione.

L'installazione guidata consentirà di scegliere la directory sulla quale installare il programma.

Dopo l'installazione il programma funziona in versione dimostrativa fino all'abilitazione. Al primo avvio o se l'abilitazione non è stata eseguita, il programma si presenta con una finestra di dialogo attraverso la quale è possibile inserire il *Codice di attivazione*, se si è proceduti all'acquisto, oppure attivare la modalità **Demo**.

ELEST	>
III. ELEST	Versione 6.5 Win Paolo Aurelio
Numero di serie: N	IIQIALUGG1GZ
Attenzione! Questa copia c attivata. Occorre richieder numeri: 0331771097 / 34679489!	lel programma deve essere e il codice di attivazione ai 59
oppure scrivere a: info@elest.com	
fornendo i seguenti dati:	
- Numero di serie della cop - Estremi fiscali per la fattu - Estremi del pagamento	ia razione
E' possibile, in alternativa, come dimostrativo del prog pulsante 'Demo'.	utilizzare la presente copia ramma selezionando il
Codice di attivaz	ione:
OK De	mo Annulla

Fig. 2.1 - Finestra di dialogo al primo avvio.

La richiesta di abilitazione dei moduli del programma si può effettuare via fax o via e-mail indicando il *Numero di serie* e gli estremi del pagamento. Si riceverà così il *Codice di attivazione* necessario per l'utilizzo del programma.

2.3 Estensione delle abilitazioni

Per tutti i moduli di cui non si ha l'abilitazione, il programma continua a funzionare in modalità Demo. E' possibile aggiungere ulteriori abilitazioni per altri moduli in qualsiasi momento.

Capitolo

descrizione del programma

3.1 Generalità

Elest è un programma dedicato al calcolo, alla verifica e alla redazione di relazioni e disegni di quelle tipologie strutturali in c.a. di frequente impiego nel campo della progettazione strutturale edilizia. Il pacchetto si presenta in modo intuitivo ed efficace. Tutti i moduli sono utilizzabili in completa autonomia.

- Modulo Sezioni
- Modulo Solaio in latero-cemento
- Modulo Sbalzo laterale (non in prosecuzione del solaio)
- Modulo Sbalzo d'angolo
- Modulo Foro e Ribassamento solaio
- Modulo Travi continue
- Modulo Travi di fondazione (Winkler)
- Modulo Plinti Diretti
- Modulo Pilastri
- Modulo Scala a soletta rampante
- Modulo Scala con trave a ginocchio
- Modulo Telaio piano
- Modulo Travi reticolari

Il programma utilizza la stessa interfaccia grafica per l'attivazione di ogni singolo modulo.

I calcoli e le verifiche possono essere eseguiti sia con il metodo delle Tensioni Ammissibili che agli Stati Limite.

Tutti gli elaborati grafici sono esportabili in formato **DXF** di interscambio e le relazioni in formato **RTF**.

All'apertura di un modulo viene automaticamente caricato il file Elest.ini che contiene dei valori preimpostati sia generali che propri della struttura. Per aggiornare questo file con i valori correnti, selezionare dal menù **Opzioni**] → **[Salva Valori di Default**]. Per azzerare tutti i campi, selezionare dal menù **[File]** → **[Nuovo**].

3.2 Documenti generati

Ogni modulo utilizza una estensione del file di dati che consente il riconoscimento del file stesso el il relativo modulo di appartenenza.

Di seguito sono elencate le estensioni predefinite per ogni modulo del programma:

- Sezioni *.sez
- Solaio *.sol
- Trave Continua *.trc
- Trave Rovescia *.trv
- Sbalzo Laterale *.slt
- Sbalzo d'Angolo *.sba
- Foro Ribassamento *.for
- Plinto Superficiale *.pls
- Pilastri *.pil
- Scala a soletta rampante *.scr
- Scala con trave a ginocchio *.scg
- Telaio Piano *.tlp
- Trave Reticolare *.acc

La relazione ed il file di disegno hanno rispettivamente estensione **.rtf** e **.dxf** precedute dal nome del lavoro.

3.3 Interfaccia

La finestra principale del programma è la seguente e il suo compito è ospitare le finestre dei singoli moduli del programma.

Fig. 3.1 - Interfaccia del programma.

L'accesso a tutti i moduli si può effettuare dalla barra del menù o dalla barra delle **Strutture** qui riprodotta:

L'accesso ai comandi avviene utilizzando la barra del menù o la barra degli **Strumenti** qui riprodotta:

D 🖻 🖬 🖤 🗯 🚳 🗸	ତ୍ ତ୍ ତ୍ ତ୍ ତ୍		? 🔋 🛈	🛨 🖂 🗏	🥋 Elabora	X
		Fig. 3.3 - Barra degli strun	nenti.			

3.3.1 Menù→ File

- D Nuovo: Permette di iniziare un nuovo lavoro azzerando i campi già editati.
- 🗳 Apri...: Permette di caricare i dati di un lavoro già svolto.
- 🖬 Salva: Permette di salvare il lavoro in corso.
- Salva come...: Permette di salvare il lavoro in corso con un altro nome.
- **Chiudi Modulo**: Chiude il modulo corrente.
- **Importa Sezione DXF**: Permette di acquisire una sezione in formato dxf.
- **Esporta in formato DXF**: Permette di esportare il disegno esecutivo in formato dxf.
- Stampa → Stampa Relazione: Invia alla stampante di sistema la relazione sul lavoro in corso.
- Stampa → Stampa Disegno: Invia alla stampante di sistema il disegno esecutivo sul lavoro in corso.
- Esci: Esce dal programma.

Salva Come	Ctrl+K	
Chiudi Modulo	Ctrl+M	
Importa Sezione DXF	Ctrl+1	
Esporta in formato DXF	Ctrl+E	

3.3.2 Menù→ Struttura

Attraverso la voce di menù **Struttura** o dalla barra delle strutture si possono avviare i singoli moduli.

Solaio . Attiva il modulo Solaio in latero-cemento.
Trave Continua . Attiva il modulo TraCon.
Sbalzo d'Angolo . Attiva il modulo SbAng.
Sbalzo Laterale . Attiva il modulo SbaLat.
Foro – Ribassamento . Attiva il modulo Foro.
Trave Rovescia . Attiva il modulo TraRov.
Plinto superficiale. Attiva il modulo PliSup.
Scala a soletta rampante . Attiva il modulo ScaRam.
Scala con trave a ginocchio. Attiva il modulo ScaGin
Pilastri. Attiva il modulo Pilastri.
Muro . Attiva il modulo Muro.
Trave Reticolare . Attiva il modulo TraRet.
Telaio Piano . Attiva il modulo TelPia.
Verifica Sezioni . Attiva il modulo Sezioni.

3.3.3 Menù→ Vista

Il menù **Vista** si attiva quando è gia stata eseguita l'elaborazione del modulo attivo. Il passaggio tra la visualizzazione del disegno e quella del relazione avviene: dal menù inserendo e togliendo il segno di spunto alle voci *Disegni* e *Relazione*; dalla barra degli strumenti premendo i relativi tasti che assumono l'aspetto di acceso/spento.

- Soom Avanti. Permette di ingrandire l'immagine sullo schermo.
- **Zoom Indietro**. Permette di ridurre l'immagine sullo schermo.
- Zoom Finestra. Permette di ingrandire una zona dell'immagine sullo schermo.
- **Zoom Precedente**. Permette di tornare all'immagine precedente.
- **Zoom Estensioni**. Permette di visualizzare tutta l'immagine sullo schermo.
- Diagrammi. Attiva/disattiva la visualizzazione dei diagrammi e degli schemi di carico.
- Armatura. Attiva/disattiva la visualizzazione delle armature per effettuare le modificare e la rielaborazione successiva.
- Disegni. Attiva/disattiva la visualizzazione dei disegni esecutivi.
- 🗏 **Relazione**. Attiva/disattiva la visualizzazione della relazione di calcolo.

Vista	
	Zoom Avanti
	Zoom Indietro
	Zoom Finestra
	Zoom Precedente
	Zoom Estensioni
	Diagrammi
	Armatura
	Relazione
~	Esecutivi
	Pendio

3.3.4 Menù→ Opzioni

Il menù Opzioni consente di effettuare alcune scelte di carattere generale e altre tipiche del modulo attivo.

- Salva valori default. Memorizza i dati del lavoro corrente così da averli disponibili ad una nuova apertura del modulo.
- Parametri Generali.
 - Unità di Misura. Imposta le unità di misura secondo il Sistema Tecnico o il Sistema Internazionale.
 - Cartella di Lavoro. Permette di scegliere la directory dove memorizzare i lavori svolti.
 - **Intestazione Stampa**. Imposta e/o attiva l'intestazione per la stampa della relazione.
 - **Coefficienti Stati Limite**. Imposta/visualizza i coefficienti per le verifiche agli Stati Limite.
- **Opzioni** relative al modulo corrente. Permette di personalizzare alcuni parametri specifici del modulo.

Opzioni
Salva valori default
Unità di Misura
Cartella di Lavoro
Intestazione Stampa
Coefficienti Stati Limite
Opzioni Foro

3.3.5 Menù→ Aiuto

• **Contenuti**: Consente di consultare il manuale.

- **Galcolatrice**: Consente di utilizzare la calcolatrice del sistema.
- **(1)** Informazioni su Elest: Visualizza informazioni generali sul programma.

Aiuto	
Manuale	
Calcolatrice	
Informazioni su Elest	

3.4 Impostazioni personali

Alcune impostazioni possono essere definite dall'utente invocando la relativa finestra di dialogo:

• Unità di Misura.

Opzioni Generali	x
Unità Di Misura Cartella Lavori Opzioni	Stampa SL-Fattori SL-Allungamenti
Unità di misura adottate:	
C Sistema Tecnico	[kg, t, mm, cm, m]
G Sistema Internazionale	[N. daN. kN. mm. cm. m]
	[,,,,,,
	OK Annulla

Fig. 3.4 - Finestra di dialogo opzioni generali, scheda unità di misura.

Dà la possibilità di scegliere tra le unità di misura del Sistema Tecnico e quelle del Sistema Internazionale da utilizzare nell'interfaccia e negli elaborati.

Cartella Lavori.

Opzioni Genera	li			×
Unità Di Misura	Cartella Lavori	Opzioni Stampa	SL-Fattori	SL- Allungamenti
Percorso:	la di dati.	Drive	:: :: [Windows]	•
C:\Elest\Lav	ori			
,				
			0K j	Annulla

Fig. 3.5 - Finestra di dialogo opzioni generali, scheda cartella lavori.

Consente di scegliere la dislocazione della cartella di default nella quale verranno salvati e aperti i file relativi ai vari lavori.

• Intestazione Stampa.

Opzioni General	i			×
Unità Di Misura	Cartella Lavori	Opzioni Stamp	SL-Fattori	SL- Allungamenti
Professionis	ta:			
<tecnico></tecnico>				
Committente	5			
<committentex< td=""><td>•</td><td></td><th></th><td></td></committentex<>	•			
Modulo Sezi	ntestazioni			
Stampa	coordinate de	i vertici		
✓ Inserise	i dominio di re	sistenza		
		_		
		ĺ	OK	Annulla

Fig. 3.6 - Finestra di dialogo opzioni generali, scheda intestazioni stampa.

Permette di immettere i dati del professionista e del committente ed inoltre di decidere se tali dati dovranno essere stampati nella relazione di calcolo.

Coefficienti per Stati Limite.

Opzioni Generali	×
Unità Di Misura Cartella Lavori Opzioni	Stampa SL-Fattori SL-Allungamenti
Fattori di sicurezza dei materiali	SLE - Limiti ampiezza fessure
coeff. parziale calcestruzzo γ_{c} 1.5	Condizioni ambientali (arm. poco sens.)
coeff. parziale acciaio 🏻 🎢 1,15	Ordinarie 💌
SLE - Fattori limitazione tensioni - per comb. rara nel cls: 0,6 - per comb. quasi perm. nel cls: 0,45 - per comb. rara nell'acciaio: 0,8	comb. frequente W _{d, fr} [mm] 0,4 comb. q. perm. W _{d, qp} [mm] 0,3
🔲 Consenti modifica dei valori	
Ripristina impostazioni predefinite	OK Annulla

Fig. 3.7 - Finestra Opzioni Generali: Fattori parziali; Limiti SLE.

Opzioni Generali		×
Unità Di Misura Cartella Lavori Opzion	i Stampa SL-Fattori	SL- Allungamenti
Legame costitutivo del cls Parabola - rettangolo Triangolo - rettangolo Rettangolo (stress block) Legame costitutivo dell'acciaio	Allungamenti spec def. limite elasto-plastic deform. limite ultima	ະifici cls ca _{Eo2} [%] 0,20 E _{ou} [%] 0,35
 Elastico-perfettamente plastico Bilineare finito con incrudimento Struttura in zona sismica =4 Strutt. principale in zona sism. <4 Rapporto di sovraresistenza K 1,00 	Allungamenti spec deform. limite elastica deform. limite ultima	ຍ _{yd} [%] 0,186 ອ _{yd} [%] 1,00
Consenti modifica dei valori Ripristina impostazioni predefinite	OK	Annulla

Fig. 3.8 - Finestra Opzioni Generali: Legami costitutivi dei materiali.

Consente di impostare/visualizzare alcuni parametri relativi al calcolo secondo il metodo agli Stati Limite:

- Fattori di sicurezza allo stato limite ultimo e allo stato limite di esercizio per il calcestruzzo ed il ferro.
- Gli allungamenti specifici che determinano il comportamento dei materiali.
- Il tipo di aggressività ambientale che a sua volta definisce i coefficienti per la determinazione delle tensioni limite per combinazioni di carico quasi permanente, rara e ultima.

3.5 Visualizzazioni

L'abilitazione dei tasti 📩 Diagrammi e 🖾 Armature si hanno solo dopo aver eseguito l'elaborazione dei dati (tasto 🗰 Elabora della barra degli strumenti). Terminata la prima fase di elaborazione il programma propone la finestra delle armature mentre il tasto Armature si presenta in modalità premuto 🖾. I tasti 🗐 Relazione e 🔀 Esecutivi saranno disponibili solo dopo aver eseguito la rielaborazione dei ferri eventualmente modificati usando il tasto 🏶 Aggiorna Calcoli. Per chiudere una finestra di visualizzazione è necessario fare click sulla stessa icona o su un'altra delle precedenti.

3.5.1 Vista Diagrammi

Premendo il tasto **Diagrammi** (non valido per i moduli Sbalzi, Pilastri e Sezioni) sulla barra degli strumenti (oppure facendo clic sulla voce Diagrammi del Menu Vista) viene visualizzata la finestra con i diagrammi delle sollecitazioni e gli schemi di carico. In questo modo si può avere una valutazione dinamica dei valori delle caratteristiche in qualsiasi punto del diagramma.

3.5.2 Vista Armature

Premendo il tasto Armature sulla barra degli strumenti (oppure facendo clic sulla voce Armature del Menu Vista) viene visualizzata una schermata dove è consentito impostare e/o modificare le armature in modo agevole con semplici movimenti del mouse attingendo da un sagomario di ferri longitudinali e di staffe. Contemporaneamente con l'immissione delle armature, in un angolo dello schermo viene rappresentata la sezione con la disposizione dei ferri relativa alla posizione corrente del puntatore. In un'altra parte dello schermo inoltre si può verificare la copertura sia a taglio che a momento flettente dell'armatura predisposta fino a quel momento.

3.5.3 Vista Esecutivi

Premendo il tasto **Secutivi** sulla barra degli strumenti (oppure facendo clic sulla voce Disegni del Menu Vista) vengono visualizzati i disegni esecutivi pronti per essere esportati in formato DXF e quindi leggibili da un qualsiasi CAD.

3.5.4 Vista Relazione

Premendo il tasto B **Relazione** sulla barra degli strumenti (oppure facendo clic sulla voce Relazione del Menu Vista) viene visualizzata la relazione di calcolo salvata come NomeFile.rtf.

3.5.5 Vista Pendio

Premendo il tasto **Pendio** (solo nel modulo Muro) sulla barra degli strumenti (oppure facendo clic sulla voce Pendio del Menu Vista) viene visualizzata la finestra per eseguire la verifica del pendio.

Il modulo **Sezioni** è un programma di facile utilizzo dedicato alla verifica di sezioni omogenee e in c.a. e permette di seguire procedure diverse di verifica: alle *Tensioni Ammissibili*, allo *Stato Limite Ultimo* e allo *Stato Limite di Esercizio*.

Per ogni sezione analizzata viene fornita una dettagliata relazione sulle caratteristiche geometriche ed elastiche in riferimento alla effettiva parte reagente.

Il programma è inoltre in grado di rappresentare e determinare lo stato tensionale per sollecitazioni di presso-flessione deviata, taglio e torsione nonché valutare lo stato deformativo e fessurativo come richiesto dalla normativa.

4.1 Avvio del modulo Sezioni

All'apertura del modulo Sezioni viene caricata l'ultima sezione salvata come default con tutti i parametri preimpostati in quell'occasione. Da questo momento si possono far variare sia le caratteristiche geometriche che quelle elastiche per una nuova verifica.

Fig. 4.1 - Interfaccia del modulo Sezioni.

Oltre alla barra degli strumenti orizzontale, in questo modulo, sulla sinistra è presente una barra degli strumenti verticale. Funzioni della barra degli strumenti verticale:

_		
	R.	Coordinate Vertici/Armature. Modifica le coordinate dei vertici e delle armature.
1	IN	Importa Sezione DXF. Consente di acquisire una sezione dal formato dxf.
0	DUT	Esporta Sezione DXF. Consente di salvarere una sezione in formato dxf.
	+	Sposta in Origine Assi. Sposta il baricentro della sezione nell'origine degli assi.
	5	Ruota. Permette di ruotare la sezione dell'angolo voluto.
	\mathbb{Z}	Disponi Armatura. Permette di introdurre le armature e i copriferri.
	T	Sezioni Tipo. Guida all'introduzione di sezioni parametriche predefinite.
Ī	Ĩ	Risultati. Visualizza i risultati dell'elaborazione in una relazione.

4.2 Scelta della sezione

4.2.1 Disegno libero di una sezione

Se si desidera analizzare una nuova sezione personalizzata, premere il tasto D Nuovo dalla barra degli Strumenti (oppure dal menù [**File**] → [**Nuovo**]). E' possibile così definire con il mouse la geometria desiderata sfruttando le potenzialità del mini-cad interno.

4.2.2 Sezioni parametriche

Per le sezioni più comuni il programma offre la possibilità di scegliere il tipo di sezione voluta attivando la corrispondente icona 👯 oppure selezionando [**Sezione Tipo**] dal menù [**Sezioni**].

Sez. Poligonale	po metria S p: (4 ore: (4 ro Lati:	ezione cm] 30 cm] 12
		10

Fig. 4.2 - Scelta di una sezione tipo.

Sono disponibili sezioni Rettangolari, a T, a T rovescia, a I, a L, a C, Circolare, Anulare, Anulare eccentrica, Scatolare, Scatolare eccentrica, Poligonale a n lati. Ogni tipologia richiede l'immissione dei parametri necessari per definirla.

4.2.3 Sezioni normalizzate

Sono disponibili una serie di sezioni normalizzate unificate e non (IPE, IPN, HE, U, L,...) alle quali si accede selezionando [**Sezioni**] dal menù.

Sezioni Tipo						
Profilati a l	>					
Profilati H	>					
Profilati a doppio T saldati	>	Simmetrici	>	ISE	>	ISE 650
Profilati U	>	Asimmetrici HSD	>	HSA	>	ISE 700
Profilato UPN	>			HSE	>	ISE 750
Profilato UAP	>			HSH	>	ISE 800
Profili ad L ali uguali	>			HSL	>	ISE 850
Profilato L ali disuguali	>			HSU	>	ISE 900
Profilati a T spigoli tondi	>					ISE 950
Profilati a Tspigoli vivi	>					ISE 1000
Rotaie (Tipo Burback)	>					
Sezioni cave	>					
Lamiere grecate	>					

Fig. 4.3 - Scelta di un profilo normalizzato.

4.2.4 Sezioni importate

E' possibile anche importare una sezione preesistente in formato DXF selezionando [Importa sezione DXF] dal menù [File] oppure premendo il tasto

4.3 Modifica della sezione

4.3.1 Modifiche per immissione coordinate

Dal menù Modifica oltre che dal pulsante k si accede alla finestra di dialogo che consente di modificare e/o visualizzare le coordinate dei vertici della sezione e gli eventuali ferri presenti in essa. Sono anche visualizzabili le coordinate dei vertici del nocciolo centrale d'inerzia.

Coor	dinate		×	Coord	linate		×
Sezi	ione Nocciolo Ar	matura		Sezi	one Nocciolo Ar	matura	
Vert.	\times [cm]	Y [cm]	▲	Vert.	X [cm]	Y [cm]	^
1	-10	12,5		1	0	-4	
2	10	12,5		2	-3	0	
3	10	-12,5		3	0	4	
4	-10	-12,5		4	3	0	
5				5			
6				6			
7				7			
8				8			
9			-	9			-
	OK	Annulla	Applica		OK	Annulla	Applica

Coord	dinate			×
Sezi	ione Nocciolo	Armatura		
Vert.	×[cm]	Y[cm]	diam. [mm]	
1	-8,00	9,50	12	
2	8,00	9,50	12	1
3	-8,00	-9,50	14	
4	8,00	-9,50	14	1
5				1
6				
7				
8				
9				-
	0	K Annu	Ila Applic	а

Fig. 4.4 - Coordinate geometria e armature.

- **Coordinate vertici**. Permette di modificare i vertici della sezione oppure di disegnare l'intera sezione per coordinate cartesiane.
- **Coordinate ferri**. Permette di modificare o introdurre le coordinate di ogni singolo ferro e di assegnarne il diametro.
- Mostra coordinate nocciolo. Permette di visualizzare le coordinate del nocciolo centrale d'inerzia della sezione. Tale eventualità è subordinata alla scelta di aver spuntato la casella Visualizza Nocciolo centrale d'inerzia.

Modifica
Coordinate vertici
Coordinate ferri
Mostra coordinate nocciolo
Ruota
Sposta sezione in origine assi
Disposizione Armature

Fig. 4.5 - Menù Modifica.

4.3.2 Modifiche grafiche con mouse

La sezione può essere modificata anche con il puntatore del mouse. E' sufficiente posizionarsi sui vertici o sui ferri, tenere premuto il tasto sinistro del mouse e trascinare in una nuova posizione. Sulla barra di stato viene indicata la posizione corrente del puntatore.

4.3.3 Spostare e ruotare una sezione

La sezione può essere spostata semplicemente cliccando in un punto qualsiasi dello schermo (eccetto i vertici, le estremità di linea o l'area dei ferri) e trascinare in una nuova posizione.

E' possibile far traslare la sezione in modo che il suo baricentro coincida con l'origine degli assi. Per fare ciò premere il pulsante 🛨 sulla barra degli strumenti verticale oppure selezionare [**Sposta sezione in origine assi**] dal menù [**Modifica**].

Per ruotare una sezione premere il pulsante 🤡 sulla barra degli strumenti verticale oppure selezionare [**Ruota...**] dal menù [**Modifica**]. Verrà visualizzata una finestra di dialogo con la quale è possibile scegliere uno degli angoli predefiniti oppure immetterne uno in gradi sessagesimali. Le rotazioni sono valutate dall'orizzontale in senso antiorario. Si può immettere anche un valore negativo e in tal caso il senso di rotazione sarà orario.

Fig. 4.6 - Ruota la sezione di un angolo stabilito.

4.4 Salvataggio di una sezione

Il salvataggio di una sezione può avvenire in diversi modi:

Se si tratta di una nuova sezione mai salvata prima, premere il pulsante Gossi o selezionare [Salva] dal menù [File] oppure selezionare [Salva con nome...] dal menù [File], quindi selezionare la cartella di destinazione e digitare il nome del file.

3. Se la sezione è già stata salvata in precedenza e si desidera fare una copia nella stessa cartella, selezionare [**Salva con nome...**] dal menù [**File**].

4. Se si desidera salvare tutti i dati della sezione per poterli avere disponibili come

valori di default ad una nuova apertura del modulo Sezioni, premere il pulsante 🖤 o selezionare [**Salva valori default**] dal menù [**Opzioni**].

5. E' possibile anche esportare una sezione con tutti gli elementi grafici visibili sullo schermo nel formato DXF premendo il pulsante o selezionando [**Esporta in formato DXF**] dal menù [**File**].

4.5 Impostazioni personali

Una serie di caselle di controllo, in basso a destra dello schermo, consente di attivare e disattivare la visibilità e alcune funzionalità molto utili in fase di disegno e modifica della sezione:

- Attiva snap con passo. Selezionando questa casella, il puntatore si muoverà su di una griglia di riferimento con passo pari al valore specificato a fianco. Il passo è espresso in centimetri e può assumere anche valori decimali.
- **Ortho**. Questa funzione, se attiva, consente di disegnare o di spostare elementi solo lungo linee orizzontali e verticali.
- Coordinate dei vertici. Mostra le coordinate dei vertici della sezione in prossimità di questi.
- **Lunghezza dei lati.** Mostra la quotatura dei lati della sezione solo se il loro valore supera quello indicato a fianco.
- **Griglia.** Mostra un reticolo con passo pari a quello indicato dallo snap.
- Ellisse centrale d'inerzia. Mostra l'ellisse centrale d'inerzia della sola parte di sezione reagente e delle armature.
- Assi principali d'inerzia. Mostra la posizione degli assi principali d'inerzia.
- **Diagramma delle tensioni (deformazioni).** Mostra l'andamento del diagramma (deformazioni) con l'indicazione dei valori di estremità.
- Nocciolo centrale d'inerzia. Mostra il nocciolo centrale d'inerzia.
- Azioni flettenti. Mostra la posizione della risultante delle azioni flettenti Mx ed My.

Attiva snap con passo = 1 cm Attiva funzione spostamento Ortho
Visualizza Coordinate dei vertici Lunghezza dei lati se ≥ 5 cm Griglia ✓ Assi princ. ed ellisse centrale d'inerzia ✓ Diagramma delle tensioni Nocciolo centrale d'inerzia Azioni flettenti

Fig. 4.7 - Impostazioni utilità e di visualizzazione.

4.6 Inserimento dell'armatura nelle sezioni in c.a.

Dopo aver disegnato una sezione con uno dei metodi disponibili, per le sezioni in c.a., è possibile inserire o modificare i ferri ed i copriferro inferiore e superiore premendo sull'icona ≅ o selezionando la voce [**Disposizione Armature**] dal menù [**Modifica**].

Armatura	×
Disposizione Armatura	
Armatura Superiore	2ø12 (2,26 cm²)
C Area ferri: [cm²] 3	φ _{minimo} 6 <u>−</u> [mm]
• Numero ferri: 2 ϕ	12 • + 0 \$\$ •
Copriferro sup.: [cm] 3	🔽 Utilizza un solo diametro
Armatura Inferiore	2ø14 (3,08 cm²)
C Area ferri: [cm²] 3,6	ϕ_{\min} 12 \checkmark [mm]
Area ferri: [cm²] 3,6 Numero ferri: 2	$\phi_{\text{minimo}} 12 \boxed{\text{[mm]}}$ $14 + 0 \phi 14 $
C Area ferri: [cm²] 3,6 Numero ferri: 2	ϕ_{minimo} 12 \checkmark [mm] 14 \checkmark + 0 ϕ 14 \checkmark \checkmark Utilizza un solo diametro
 Area ferri: [cm²] 3,6 Numero ferri: 2 Ø Copriferro inf.: [cm] 3 Disponi armatura perimetral 	¢minimo 12 ▼ [mm] 14 ▼ + 0 ¢ 14 ▼ ▼ Utilizza un solo diametro
 Area ferri: [cm²] 3,6 Numero ferri: 2 Ø Copriferro inf.: [cm] 3 Disponi armatura perimetral Ottimizza per sez. rettar 	¢minimo 12 ▼ [mm] 14 ▼ + 0 ¢ 14 ▼ ▼ Utilizza un solo diametro le ngolare

Fig. 4.8 - Impostazioni delle armature e del copriferro.

L'inserimento dei ferri può avvenire in duplice modo:

- Indicando l'area di ferro ed il diametro minimo da utilizzare.
- Inserendo il numero di ferri e fino a due diametri. E' possibile comunque inserire più di due diametri intervenendo sulla finestra Coordinate descritta al punto 4.3.1

Selezionando la casella **Disponi armatura perimetrale**, si consente al programma di sistemare i ferri inseriti lungo il perimetro della sezione ad interasse costante.

🖬 Armatura 🛛 🗙				
Disposizione Armatura				
Armatura Perimetrale 2e12 (2,26 cm²)				
C Area ferri: [cm²] 3 ϕ_{minimo} 6 \checkmark [mm]				
• Numero ferri: 2 ϕ 12 \bullet + 0 ϕ 8 \bullet				
Copriferro: [cm] 3 Vtilizza un solo diametro				
Disponi armatura perimetrale				
Escludi le armature				
<u>O</u> K <u>Annulla</u>				

Fig. 4.9 - Impostazione di armatura perimetrale.

Per sezioni omogenee si possono sospendere le armature selezionando la casella **Escludi le armature**.

4.7 Verifica sezione con le Tensioni Ammissibili

Disegnata la geometria e l'armatura, è possibile passare alla verifica sotto l'azione dei carichi agenti. Premendo il tasto **T.A.**, a destra dello schermo, il programma si predispone ad effettuare la verifica secondo il metodo delle Tensioni Ammissibili che prevede il non superamento dei valori massimi ammissibili per le tensioni nel calcestruzzo e nell'acciaio per sezioni in c.a. o del materiale per sezioni omogenee.

Infine premendo il tasto **Elabora** viene calcolato il regime tensionale. Sulla parte destra dello schermo, in un riquadro, sono visualizzati i risultati principali per un resoconto immediato. Informazioni più dettagliate sono invece disponibili nella relazione alla quale si accede dalla barra degli strumenti verticale.

4.7.1 Sezioni in calcestruzzo

Prima di passare al calcolo sono necessarie alcune operazioni:

- Scelta del tipo di verifica. Dal menù [Verifiche] selezionare la voce [TA -Tenso/Presso-flessione...] oppure [TA - Taglio e/o Torsione...].
- Spuntare la casella **Sezione parzializzata** se si vuole non tenere conto della capacità di resistenza a trazione del calcestruzzo.
- Scelta del tipo di acciaio, la classe del calcestruzzo, il modulo elastico del ferro e il coefficiente di omogeneizzazione. In seguito a tali impostazioni vengono visualizzate le tensioni ammissibili calcolate automaticamente (solo se viene spuntata la casella Metodo tensioni automatico):

- $\sigma_{c amm}$ tensione ammissibile principale del cls
- σ_{famm} tensione ammissibile principale del ferro
- au_{co} tensione tangenziale minima del cls che non richiede armatura a taglio
- τ_{c1} tensione tangenziale limite del cls con armatura a taglio
- au_{c2} tensione tangenziale limite del cls con armatura a taglio in presenza di torsione
- Inserire le sollecitazioni e l' eventuale armatura trasversale.

T.A.	S.L.		T.	A .	S.L.	
T.A. Materiale: Calcestr Sezione parzializzat Blocca posizione ar Azioni Momento Y: [dał Momento Z: [dał	S.L. ruzzo a mature V·m] 700 V·m]	Azioni Cls / c.a.	Tipo di accia Fe B44k Coeff. di om R ck	A. aio: Ti ogeneizzazio [daN. tensioni / [daN/cm²]	S.L. po di cls: C25/30 ▼ one: 15 /cm²] 300 Automatico 97,5	Azioni Cls / c.a.
Sforzo Normale: [c Taglio: [c Mom. Torcente: [daħ Area Staffe: [r Passo Staffe:	JaN] 1000 JaN] 800 N·m] 180 cm²] 1,01 [cm] 12	Acciaio Legno	$\sigma_{ m famm}$ $ au_{ m co}$ $ au_{ m c1}$ $ au_{ m ct}$	[daN/cm²] [daN/cm²] [daN/cm²] [daN/cm²]	2600 6 18,28 20,1	Acciaio Legno

Fig. 4.10 - Immissione dati per sezione in c.a. nel metodo alle T.A.

4.7.2 Sezioni in acciaio

Prima di passare al calcolo sono necessarie alcune operazioni:

- Scelta della classe dell'acciaio. In seguito a tale impostazione vengono visualizzate le tensioni ammissibili calcolate automaticamente:
 - σ_{amm} tensione principale ammissibile
 - au_{amm} tensione tangenziale ammissibile
- Inserimento delle sollecitazioni.

Fig. 4.11 - Immissione dati per sezione in acciaio nel metodo alle T.A.

4.7.3 Sezioni in legno

Prima di passare al calcolo sono necessarie alcune operazioni:

- Scelta del tipo di verifica. Dal menù [Verifiche] selezionare la voce [TA -Tenso/Presso-flessione...] oppure [TA - Taglio e/o Torsione...].
- Scelta della categoria del legno. La selezione viene effettuata da un elenco di voci tra latifoglie e conifere.
- Scelta della specie arborea. Selezionare una voce dall'elenco: castagno, quercia, pioppo, altro.
- Scelta del coefficiente parziale di sicurezza del materiale.
- Scelta del coefficiente di modello. Premendo il tasto Coeff. di modello... si apre una finestra dalla quale è possibile scegliere tale coefficiente in funzione della classe di durata del carico e della classe di servizio (umidità).

Valori di Kmod per legno massiccio, lamellare ed LVL ×					
Classi di	durata del carico	Classi di servizio			
Classe	Durata	1	2	3	
		20°- Ur<65%	20°- Ur<85%	20°- Ur>85%	
Permanente	Più di 10 anni	0,60	0,60	0,50	
Lunga durata	6 mesi - 10 anni	0,70	0,70	0,55	
Media durata	1 settimana - 6 mesi	0,80	0,80	0,65	
Breve durata	meno di 1 settimana	0,90	0,90	0,70	
Istantaneo	-	1,10	1,10	0,90	
Ur = umidità relativa dell'aria					
K OK Annulla					

Fig. 4.12 - Finestra di dialogo per la scelta del coefficiente di modello.

- Operate le scelte precedenti, vengono proposte le tensioni ammissibili di riferimento:
 - $\sigma_{t, amm}$ tensione ammissibile a trazione parallela alle fibre.
 - $\sigma_{c, amm}$ tensione ammissibile a compressione parallela alle fibre.
 - σ_{f, amm} tensione ammissibile a flessione.
 - τ_{amm} tensione tangenziale ammissibile.
- Inserimento delle sollecitazioni.

T.A.	S.L.	T.A.	S.L.
T.A. Materiale: Legno Sezione parzializzata Blocca posizione armatur Azioni Coeff. Kmod: Momento Y: [daN·m] Momento Z: [daN·m] Sforzo Normale: [daN] Taglio:	S.L. Azioni Cls / c.a. Acciaio 1000 800	T.A. Tipo di legname: Resinoso Categoria: II σ _{t amm} [daN/cm²] σ _{t amm} [daN/cm²] σ _{t amm} [daN/cm²] σ _{f amm} [daN/cm²]	S.L. Azioni Cls / c.a. Acciaio 3 97 1 102
Mom. Torcente: [daN·m] Area Staffe: [cm²] Passo Staffe: [cm]	1,01 12	τ _{amm} [daN/cm²	

Fig. 4.13 - Immissione dati per sezione in legno nel metodo alle T.A.

4.8 Verifica sezione agli Stati Limite

Il programma è in grado di effettuare sia verifiche agli stati limite ultimi che agli stati limite di esercizio. La verifica della sicurezza, in entrambi i casi, consiste nell'accertare che i valori delle sollecitazioni prodotte dai carichi di calcolo S_d non superino le resistenze di calcolo R_d, relative allo stato limite considerato, cioè:

$$S_d \leq R_d$$

Verifiche agli stati limite ultimi. Si tiene conto della non linearità del legame costitutivo σ - ε del materiale. Si controlla che l'effetto di un carico che abbia probabilità estremamente ridotta di essere superato (e quindi adeguatamente più grande del valore caratteristico) non mandi in crisi la struttura anche se la resistenza del materiale assume un valore al di sotto del quale è estremamente ridotta la probabilità di scendere (e quindi adeguatamente più piccolo del valore caratteristico). Il valore di calcolo delle azioni è ottenuto moltiplicando il valore caratteristico F_k per il coefficiente parziale γ_F : $F_d = \gamma_F F_k$

Il valore di calcolo della proprietà è ottenuto dividendo il valore caratteristico f_k per il coefficiente parziale γ_M : $f_d = f_k / \gamma_M$

Verifiche agli stati limite di esercizio. Oltre a tenere conto della non linearità del legame costitutivo σ - ε del materiale, si definiscono diverse combinazioni di azioni (rara, frequente, quasi permanente) che corrispondono a carichi con probabilità di occorrenza via via maggiore. I coefficienti parziali dei materiali sono posti pari a 1. Questo tipo di verifica è possibile solo per sezioni in cemento armato.

Per eseguire una verifica secondo il metodo agli Stati Limite premere il tasto **S.L.** sulla parte destra dello schermo.

4.8.1 Sezioni in calcestruzzo

Prima di passare al calcolo sono necessarie alcune operazioni:

• Scelta del tipo di verifica. Dal menù [Verifiche] selezionare una voce:

[SLU - Dominio M-N...] [SLU - Tenso/Presso-flessione...] [SLU - Taglio e/o Torsione...] [SLE - Fessurazione...] [SLE - Tensioni di Esercizio...]

- Dalla scheda Cls/c.a. selezionare il tipo di acciaio, la classe del calcestruzzo, il modulo elastico del ferro e il coefficiente di omogeneizzazione. In seguito a tali impostazioni vengono visualizzate le resistenze caratteristiche e di calcolo del calcestruzzo e del ferro:
 - \mathbf{f}_{ck} resistenza caratteristica del calcestruzzo
 - $\alpha {\cdot} f_{\text{cd}}$ resistenza di calcolo del calcestruzzo per carichi di lunga durata
 - $\mathbf{\tau}_{\text{Rd}}$ resistenza di calcolo tangenziale del calcestruzzo
 - **f**_{yk} resistenza caratteristica del ferro
 - \mathbf{f}_{yd} resistenza di calcolo del ferro
- Inserire le sollecitazioni e l' eventuale armatura trasversale.

I.A. S.L.		1.A. S.L.	
Materiale: Calcestruzzo Sezione parzializzata Blocca posizione armature	Azioni	Tipo di acciaio: Tipo di cls: Fe B44k C25/30 Coeff. di omogeneizzazione: 15	IIIOITM
Azioni Valori di calcolo delle azioni Momento Y: [daN·m]	Cls / c.a.	R _{ck} [daN/cm²] 300 ✓ Modo tensioni Automatico	CIS/ C.d.
Momento Z: [daN·m] Sforzo Normale: [daN] 1000 Taglio: [daN] 800	Acciaio	f_{ck} [daN/cm²] 249,0 f_{cd} [daN/cm²] 132,3 f_{bd} [daN/cm²] 26,9	Mucialo
Mom. Torcente: [daN·m] Area Staffe: [cm²] 1,01 Passo Staffe: [cm] 12	Legno	f _{yk} [daN/cm²] 4500,0 f _{yd} [daN/cm²] 3913,0	LEBIO

Fig. 4.14 - Immissione dati per sezione in calcestruzzo nel metodo agli Stati Limite.

4.8.2 Sezioni in acciaio

Per le sezioni in acciaio è necessario specificare le seguenti scelte:

- Scelta del tipo di verifica. Dal menù [Verifiche] selezionare una voce: [SLU - Tenso/Presso-flessione...]
 [SLU - Taglio e/o Torsione...]
- Selezione della classe dell'acciaio dalla scheda Acciaio. In seguito a tale impostazione vengono visualizzate le tensioni ammissibili calcolate automaticamente:
 - \mathbf{f}_{yd} resistenza principale di calcolo
 - $\mathbf{\tau}_{\text{Rd}}$ resistenza tangenziale di calcolo
 - T.A. S.L. LA. S.L. Profilo Instabilità Fori Irrigidenti Azioni Materiale: Azioni Acciaio • Profili laminati a caldo Sezione parzializzata Profili a sezione aperta Blocca posizione armature Profili a sezione cava Azioni Spessore nominale elemento CIS CIS Valori di calcolo delle azioni Spessore t =< 40 mm C.a. C.a. 40 mm < t =< 80 mm C Momento Y: [daN·m] 1500 🔿 Laminati a freddo e lamiere Momento Z: [daN·m] Grado acciaio (sezione aperta): Sforzo Normale: [daN] 1000 Acciaio Acciaio S 235 (EN 10025-2) [daN] 800 Taglio: [Kg/cm²] 2350 f_{vk} Mom. Torcente: [daN·m] [Kg/cm²] 3600 **f**tk Area Staffe: [cm²] 1,01 Legno Legno Passo Staffe: [cm] 12
- Inserimento delle sollecitazioni nella scheda Azioni.

Fig. 4.15 - Immissione dati per sezione in acciaio nel metodo agli Stati Limite.

4.8.3 Sezioni in legno

Per sezioni in legno sono necessarie le seguenti scelte:

Scelta del tipo di verifica. Dal menù [Verifiche] selezionare una voce:
 [SLU - Tenso/Presso-flessione...]

```
[SLU - Taglio e/o Torsione...]
```

- Scelta della categoria del legno. Dalla scheda **Legno** si seleziona la categoria da un elenco di voci tra latifoglie e conifere.
- Scelta della specie arborea. Dalla scheda **Legno** si seleziona una voce dell'elenco tra: castagno, quercia, pioppo, altro.
- Scelta del coefficiente parziale di sicurezza del materiale.
- Scelta del coefficiente di modello. Premendo il tasto **Coeff. di modello...** si apre una finestra dalla quale è possibile scegliere tale coefficiente in funzione della classe di durata del carico e della classe di servizio (umidità).

- Operate le scelte precedenti, vengono proposte le tensioni di calcolo di riferimento:
 - $\mathbf{f}_{\mathrm{t,o,d}}$ resistenza di calcolo a trazione parallela alle fibre.
 - $\mathbf{f}_{c,o,d}$ resistenza di calcolo a compressione parallela alle fibre.
 - $\mathbf{f}_{m,d}$ resistenza di calcolo a flessione.
 - $\mathbf{f}_{v,d}$ resistenza di calcolo tangenziale.
- Inserimento delle sollecitazioni.

Fig. 4.16 - Immissione dati per sezione in legno nel metodo agli Stati Limite.

4.9 Relazione di calcolo

Per visualizzare la relazione della sezione bisogna selezionare dalla barra degli strumenti verticale l'icona **Risultati**.

I dati geometrici della sezione resi disponibili sono:

- Area sezione
- Area sezione reagente omogeneizzata
- Posizione del baricentro $X_G \in Y_G$
- Momenti statici *Sx* e *Sy*
- Momenti di inerzia rispetto agli assi x e y J_x e J_y
- Momenti di inerzia rispetto agli assi principali J_1 e J_2
- Momento centrifugo J_{xy}
- Inclinazioni degli assi principali α_1 e α_2
- Raggi principali di inerzia ρ_1 e ρ_2
- Inclinazione dell'asse neutro β

A questi seguono i dati inerenti al materiale, alla eventuale armatura e le caratteristiche delle sollecitazioni.

Infine sono evidenziati i risultati della verifica.

4.10 Esempi di verifica

4.10.1 VERIFICA ALLE T.A. DI SEZIONE RETTANGOLARE IN C.A. PRESSO-INFLESSA

Verifica di una trave in cemento armato di sezione $30 \times 50 cm$, con armatura tesa costituita da 5ø10 e armatura compressa da 3ø10 soggetta a momento flettente Mx = 3000 Kgm, My = 500 Kgm ed uno sforzo di compressione pari a 2000 Kg.

Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb38k.

T.A. S.L.					
Materiale: Calcestruzzo Sezione parzializzata Blocca posizione armature Azioni	Azioni				
Momento Y: [daN·m] 3000 Momento Z: [daN·m] 500 Sforzo Normale: [daN] 2000 T aglio: [daN] Mom. Torcente: [daN·m] Area Staffe: [cm²] Passo Staffe: [cm] 12	Is/c.a. Acciaio Legno	Tipo di accia Fe B38k Coeff. di om R ck G Modo	A. aio: Ti ogeneizzazio (daN/ (daN/cm²)	S.L po di cls: 20/25 _ pne: 15 /cm²] 250 Automatico - 85	Azioni Cls / c.a.
TA - verifica a presso-flessione σ _{c max} [daN/cm²] 56,66 σ _{c min} [daN/cm²] σ _{f max} [daN/cm²] y(asse neutro) [cm] 16,57		σ_{famm} $ au_{co}$ $ au_{c1}$ $ au_{ct}$	[daN/cm²] [daN/cm²] [daN/cm²] [daN/cm²]	2200 5,33 16,85 18,53	Acciaio Legno

Fig. 4.17 - Immissione dati e risultati della verifica

Fig. 4.18 - Verifica grafica di una sezione rettangolare presso-inflessa.
RELAZIONE DI CALCOLO

Sezione rettangolare Materiale: Calcestruzzo armato Metodo di verifica: Tensioni Ammissibili

DATI GEOMETRICI ED ELASTICI

Area sezione	[cm ²]	1500,00
Area sezione reagente omogeneizzata	[cm ²]	459,41
Ascissa baricentro(X _G)	[cm]	-1,65
Ordinata baricentro (Y _G)	[cm]	13,63
Momento statico (S _x)	[cm ³]	0,00
Momento statico (S_y)	[cm ³]	0,00
Momento d'inerzia (J _x)	[cm ⁴]	177484,20
Momento d'inerzia (J _y)	[cm ⁴]	36352,68
Momento centrifugo (J _{xy})	[cm ⁴]	-14078,36
Momento principale d'inerzia (J ₁)	[cm ⁴]	92414,98
Momento principale d'inerzia (J ₂)	[cm ⁴]	34856,25
Inclinazione asse principale 1 (α_1)	[°]	3,7373
Inclinazione asse principale 2 (α_2)	[°]	93,7373
Raggio principale d'inerzia 1 ($ ho_1$)	[cm]	14,18
Raggio principale d'inerzia 2 (ρ_2)	[cm]	8,71
Inclinazione dell'asse neutro (β)	[°]	18,6226
Coeff. di omogeneizzazione		15
Copriferro superiore	[cm]	3,0
Copriferro inferiore	[cm]	3,0
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	250
Tensione principale ammissibile del cls (σ_{amm})	[kg/cm ²]	85
Tensione principale ammissibile dell'acciaio ($\sigma_{f, amm}$)	[kg/cm ²]	2200
Tensione tang. minima ammissibile da taglio ($ au_{co, amm}$)	[kg/cm ²]	5,3
Tensione tang. massima ammissibile da taglio ($ au_{c1, amm}$)	[kg/cm ²]	16,9
SOLLECITAZIONI E ARMATURE		
Momento in direzione Y	[kam]	3000
Momento in direzione V	[kgm]	5000
Sforzo Normalo		2000
Taglio	[ՒՑ] [Խց]	2000
Momento Torcente	[kgm]	2000
Armatura longitudinale inferiore	[cm ²]	303(5a10)
Armatura longitudinale superiore	[cm ²]	236(3a10)
Ar matur a longituumale superiore		2,30 (3010)
VERIFICA A PRESSO-FLESSIONE DEVIATA		
Sezione parzializzata		
Distanza asse neutro dal lembo compresso	[cm]	16,33
Tensione principale massima nel cls $(\sigma_{c max})$	[kg/cm ²]	55,3
Tensione principale massima nell'acciaio ($\sigma_{f max}$)	[kg/cm ²]	1888,4

4.10.2 VERIFICA ALLO S.L.U. DI SEZIONE A T IN C.A. SOGGETTA A FLESSIONE E TAGLIO

Verificare la sezione in cemento armato di fig. 20, con armatura tesa costituita da 4ø14 e armatura compressa da 4ø12 soggetta a un momento flettente Mx = 7100 *Kgm* e ad uno sforzo di taglio pari a 13000 *Kg*. L'armatura trasversale è costituita da staffe ø8 ogni 18 *cm*.

Sono utilizzati calcestruzzo di classe Rck 300 e barre del tipo Feb44k.

Fig. 4.19 - Immissione dati e caratteristiche dei materiali.

Fig. 4.20 - Verifica a SLU di una sezione a T con diagramma delle deformazioni.

RELAZIONE DI CALCOLO

Sezione a T Materiale: Calcestruzzo armato Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Area sezione	[cm ²]	1600,00
Area sezione reagente omogeneizzata	[cm ²]	426,34
Ascissa baricentro(X _G)	[cm]	0,00
Ordinata baricentro (Y _G)	[cm]	0,00
Momento statico (S _x)	[cm ³]	-11286,84
Momento statico (S _y)	[cm ³]	0,00
Momento d'inerzia (J _x)	[cm ⁴]	142451,92
Momento d'inerzia (J _y)	[cm ⁴]	36352,68
Momento centrifugo (J _{xy})	[cm ⁴]	0,00
Momento principale d'inerzia (J ₁)	[cm ⁴]	142451,92
Momento principale d'inerzia (J ₂)	[cm ⁴]	78685,78
Inclinazione asse principale 1 (α_1)	[°]	0,0000
Inclinazione asse principale 2 (α_2)	[°]	90,0000
Raggio principale d'inerzia 1 ($ ho_1$)	[cm]	18,28
Raggio principale d'inerzia 2 (ρ_2)	[cm]	13,59
Inclinazione dell'asse neutro (β)	[°]	0,0000
Coeff. di omogeneizzazione		15
Copriferro superiore	[cm]	3,0
Copriferro inferiore	[cm]	3,0
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	300
Modulo elastico del calcestruzzo (E _c)	[kg/cm ²]	312201,9
Resistenza a trazione semplice (f _{ct})	[kg/cm ²]	33,9
Resistenza a trazione per flessione (f_{cfk})	[kg/cm ²]	21,9
Resistenza cilindrica di calcolo (f _{cd})	[kg/cm ²]	155,6
Resistenza tangenziale di calcolo ($ au_{Rd}$)	[kg/cm ²]	2,85
Tipo di acciaio		FeB44k
Modulo elastico dell'acciaio (E _s)	[kg/cm ²]	2100000
Tensione di snervamento di calcolo (f _{yd})	[kg/cm ²]	3739,1

SOLLECITAZIONI E ARMATURE

[kgm]	7100
[kgm]	0
[kg]	0
[kg]	13000
[kgm]	0
[cm ²]	6,16 (4ø14)
[cm ²]	4,52 (4ø12)
[cm ²]	1,01 (ø8/18)
	[kgm] [kg] [kg] [kgm] [cm ²] [cm ²] [cm ²]

VERIFICA A PRESSOFLESSIONE

Raggiungimento dello S.L.U. per accrescimento dei carichi con sforzo normale costante.

Sezione verificata.		
Coefficiente di sicurezza (N=cost)		1,45
Momento resistente ultimo (M _{Rd})	[tm]	10,31
Campo di rottura		B-B'
Distanza asse neutro dal lembo compresso	[cm]	5,32
Deformazione superiore del cls ($\epsilon_{c sup}$)		0,001277
Deformazione superiore dell'acciaio ($\varepsilon_{s sup}$)		0,000557
Deformazione inferiore dell'acciaio ($\varepsilon_{s inf}$)		-0,010000
Deformazione inferiore del cls ($\epsilon_{c inf}$)		-0,010720
Tensione superiore nel cls ($\sigma_{c sup}$)	[kg/cm ²]	115,0

Tensione superiore nell'acciaio ($\sigma_{s sup}$) Tensione inferiore nell'acciaio ($\sigma_{s inf}$) Tensione inferiore nel cls ($\sigma_{c inf}$)	[kg/cm ²] [kg/cm ²] [kg/cm ²]	1170,2 -3739,1 0,0
VERIFICA A TAGLIO		
Sezione verificata.		
Resistenza del cls senza armatura a taglio (V _{Rd1})	[kg]	4020,5
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	43886,3
Resistenza della sezione con armatura a taglio (V_{Rd3})	[kg]	15307,2
Valori limite secondo il D.M. 5/2/96:		
Armatura trasversale minima	[cm ² /m]	2,7
Passo massimo delle staffe	[cm]	33,3

4.10.3 VERIFICA ALLO S.L.E. DI SEZIONE RETTANGOLARE IN C.A.

Verificare una sezione 30 x 40 in cemento armato, con armatura tesa costituita da 4@12 e armatura compressa da 3@12 soggetta a un momento flettente Mx = 3200 Kgm.

Fig. 4.21 - Verifica sezione in c.a. allo stato limite di esercizio.

RELAZIONE DI CALCOLO

Sezione rettangolare Materiale: Calcestruzzo armato Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Area sezione	$[cm^2]$	1200,00
Area sezione reagente omogeneizzata	[cm ²]	1318,75
Ascissa baricentro(X _G)	[cm]	0,00
Ordinata baricentro (Y _G)	[cm]	0,00
Momento statico (S _x)	[cm ³]	262,43
Momento statico (S _y)	[cm ³]	0,00
Momento d'inerzia (J _x)	[cm ⁴]	194267,00
Momento d'inerzia (J _y)	[cm ⁴]	102115,87
Momento centrifugo (J _{xy})	[cm4]	0,00
Momento principale d'inerzia (J ₁)	[cm ⁴]	194267,00
Momento principale d'inerzia (J ₂)	[cm ⁴]	102115,87
Inclinazione asse principale 1 (α_1)	[°]	0,0000
Inclinazione asse principale 2 (α_2)	[°]	90,0000
Raggio principale d'inerzia 1 ($ ho_1$)	[cm]	12,14
Raggio principale d'inerzia 2 (ρ_2)	[cm]	8,80
Inclinazione dell'asse neutro (β)	[°]	0,0000
Coeff. di omogeneizzazione		15
Copriferro superiore	[cm]	3,0
Copriferro inferiore	[cm]	3,0
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	300
Modulo elastico del calcestruzzo (E _c)	[kg/cm ²]	312201,9
Resistenza a trazione semplice (f_{ct})	[kg/cm ²]	33,9
Resistenza a trazione per flessione (f_{cfk})	[kg/cm ²]	21,9
Resistenza cilindrica di calcolo (f_{cd})	[kg/cm ²]	155,6
Resistenza tangenziale di calcolo (τ_{Rd})	[kg/cm²]	2,85
Tipo di acciaio	51 (27	FeB44k
Modulo elastico dell'acciaio (E _s)	[kg/cm ²]	2100000
Tensione di snervamento di calcolo (f _{yd})	[kg/cm ²]	3739,1
SOLLECITAZIONI E ARMATURE		
Momento in direzione X	[kgm]	3200
Momento in direzione Y	[kgm]	0
Sforzo Normale	[kg]	0
Taglio	[kg]	0
Momento torcente	[kgm]	0
Armatura longitudinale inferiore	$[cm^2]$	4.52 (4ø12)
Armatura longitudinale superiore	[cm ²]	3.39 (3ø12)
5 I		
VERIFICA A FESSURAZIONE		
Aggressività ambientale lieve		
Momento fessurazione (M _{fess})	[kgm]	2127
Ampiezza delle fessure (w _k)	[mm]	0,14
Tensione nel cls compresso ($\sigma_{c \text{ compr}}$)	[kg/cm ²]	-51,34
Tensione nel cls teso ($\sigma_{c traz}$)	[kg/cm ²]	155,21
Tensione massima nel ferro ($\sigma_{s max}$)	[kg/cm ²]	-2095,73
VERIFICA ALLE TENSIONI DI ESERCIZIO		
Combinazione di carico rara		
Tensione nel calcestruzzo (σ_c)	[kg/cm ²]	51,3 < 149,4
Tensione nell'acciaio (σ_s)	[kg/cm ²]	2096 < 3010
Combinazione di carico quasi permanente		

Tensione nel calcestruzzo (σ_c)	
Tensione nell'acciaio (σ_s)	

[kg/cm ²]	51,3 < 112,1
[kg/cm ²]	2096 < 2150

4.10.4 VERIFICA ALLE T.A. DI SEZIONE IN ACCIAIO

Verifica di una Profilato HEA 200 soggetto a momento flettente Mx = 3700 *Kgm*, My = 700 *Kgm*, uno sforzo di compressione di 9000 *Kg* ed un taglio pari a 10000 *Kg*.

Viene utilizzato acciaio di classe Fe 360.

T.A.	S.L.		T.A.	S	.L.
Materiale: Accia	zata e armature	Azioni	Profilo Instabilita	à Fori Irrigide	nti Azioni
Azioni		CIs /	Fe 360	-	
Momento Y: [daN·m] 3700	c.a.			c.a.
Momento Z: [daN·m] 700		σ_{amm} [daN	V/cm²] 1600	
Sforzo Normale:	[daN] 9000	Acc	7 (d-b)	U and 1007.0	- Acc
Taglio:	[daN] 10000	iaio		1097,0	iaio
Mom. Torcente: [daN·m]				
Area Staffe:	[cm²] 1,01	6			5
Passo Staffe:	[cm] 12	ong			ouB
	TA - verifica a	a fless	ione e taglio —	_	
	$\sigma_{ m max}$	[daN/	/cm²] 1642,54		
	$ au_{\max}$	[daN/	/cm²] 894,85		
	$oldsymbol{\sigma}_{id}$	[daN/	/cm²] 2258,36		
	y (asse neutro)		[cm] 14,53		

Fig. 4.22 - Immissione dati e risultati della verifica.

Fig. 4.23 - Verifica grafica di un profilato in acciaio.

RELAZIONE DI CALCOLO

Profilato HEA 200 - UNI 5397 Materiale: Acciaio Metodo di verifica: Tensioni Ammissibili

DATI GEOMETRICI ED ELASTICI

Area sezione	[cm ²]	54,00
Ascissa baricentro(X _G)	[cm]	0,00
Ordinata baricentro (Y _G)	[cm]	0,00
Momento statico (S _x)	[cm ³]	0,00
Momento statico (S _y)	[cm ³]	0,00
Momento d'inerzia (J _x)	[cm ⁴]	3702,46
Momento d'inerzia (J _y)	[cm ⁴]	1335,72
Momento centrifugo (J _{xy})	[cm ⁴]	0,00
Momento principale d'inerzia (J ₁)	[cm ⁴]	3702,46
Momento principale d'inerzia (J ₂)	[cm ⁴]	1335,72
Inclinazione asse principale 1 (α_1)	[°]	0,0000
Inclinazione asse principale 2 (α_2)	[°]	90,0000
Raggio principale d'inerzia 1 (ρ_1)	[cm]	8,28
Raggio principale d'inerzia 2 (ρ_2)	[cm]	4,97
Inclinazione dell'asse neutro (β)	[°]	27,6730
Classe dell'acciaio		Fe 360
Tensione principale ammissibile dell'acciaio (σ_{amm})	[kg/cm ²]	1600
Tensione tangenziale ammissibile dell'acciaio ($ au_{amm}$)	[kg/cm ²]	923,8

SOLLECITAZIONI

Momento in direzione X	[kgm]	3700
Momento in direzione Y	[kgm]	700
Sforzo Normale	[kg]	9000
Taglio	[kg]	10000
Momento Torcente	[kgm]	0

VERIFICA A PRESSO-FLESSIONE DEVIATA E A TAGLIO

Distanza asse neutro dal lembo compresso	[cm]	14,53
Tensione principale massima (σ_{max})	[kg/cm ²]	1640,1
Tensione principale minima (σ_{min})	[kg/cm ²]	-1306,8
Tensione tangenziale massima da taglio ($ au_{tag}$)	[kg/cm ²]	895,0
Tensione massima ideale (σ_{id})	[kg/cm ²]	1559,2

4.10.5 VERIFICA SEZIONE IN LEGNO AGLI S.L.

Verifica di una sezione in legno 20×30 soggetta a momento flettente Mx = 2500 Kgm, My = 700 Kgm, uno sforzo di compressione di 9000 Kg.

Viene impiegato legno di Classe di qualità S1.

Fig. 4.24 - Immissione dati della sezione.

RELAZIONE DI CALCOLO

Profilato rettangolare Materiale: Legno Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Area sezione	[cm ²]	600
Ascissa baricentro(X _G)	[cm]	0,00
Ordinata baricentro (Y _G)	[cm]	0,00
Momento statico (S _x)	[cm ³]	0,00
Momento statico (S _y)	[cm ³]	0,00
Momento d'inerzia (J _x)	[cm ⁴]	45000

Momento d'inerzia (J_y) Momento centrifugo (J_{xy}) Momento principale d'inerzia (J_1) Momento principale d'inerzia (J_2) Inclinazione asse principale 1 (α_1) Inclinazione asse principale 2 (α_2) Raggio principale d'inerzia 1 (ρ_1) Raggio principale d'inerzia 2 (ρ_2) Inclinazione dell'asse neutro (β) Spece arborea Classe di qualità Coefficiente di sicurezza parziale del materiale Coefficiente di sicurezza parziale del materiale Coefficiente di modello Tensione di calcolo a trazione assiale ($f_{t,o,d}$) Tensione di calcolo a flessione ($f_{m,d}$)	[cm ⁴] [cm ⁴] [cm ⁴] [°] [°] [cm] [cm] [cm] [°] [kg/cm ²] [kg/cm ²] [kg/cm ²]	20000 0,00 45000 20000 90,0000 8,66 5,77 32,2109 Larice S1 - Conifere 1,35 1,7 74,1 80 124,4 11 9
l'ensione di calcolo a taglio (f _{v,d})	[kg/cm ²]	11,9
<u>SOLLECITAZIONI</u>		
Momento in direzione X Momento in direzione Y Sforzo Normale Taglio Momento Torcente	[kgm] [kgm] [kg] [kg] [kgm]	2500 700 9000 0 0
VERIFICA A PRESSO-FLESSIONE DEVIATA E A TAGLIO		
Distanza asse neutro dal lembo compresso Coefficiente di forma (k _m) Tensione principale a compressione ($\sigma_{c,o,d}$) Tensione principale a flessione ($\sigma_{f,o,d}$) Tensione totale massima (σ_{max}) Tensione totale minima (σ_{min}) ($\sigma_{c,o,d} / f_{c,o,d}$) ² + ($\sigma_{m,x,d} / f_{m,d}$) + k _m · ($\sigma_{m,y,d} / f_{m,d}$) = ($\sigma_{c,o,d} / f_{c,o,d}$) ² + k _m · ($\sigma_{m,x,d} / f_{m,d}$) + ($\sigma_{m,y,d} / f_{m,d}$) = Sezione verificata	[cm] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²]	20,31 0,7 15,0 118,3 133,3 -103,3 0,9 < 1 0,79 < 1

solaio Capitolo 5

5.1 Generalità

Il modulo Solaio guida il progettista verso la definizione geometrica ed elastica di un solaio in laterocemento e, dopo aver definito le armature opportune in modo automatico o secondo le esigenze dell'utente, fornisce le verifiche sia con le Tensioni Ammissibili che con il metodo agli Stati Limite.

Ad ogni nuovo avvio vengono caricati dei valori predefiniti che permettono, con poche variazioni, il quadro dei dati di input voluto.

Dopo l'avvio del modulo appaiono, sulla destra, le opzioni relative ai carichi, alle tensioni ammissibili e alle condizioni di carico:

- Opzione **Metodo di Verifica**: impostandola su **TA (SL)**, le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione **Modalità Carichi**: se impostata su **Automatico** consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.
- Opzione Analisi per tutte le condizioni di carico:
 - Se attivata, il programma individua automaticamente, durante l'elaborazione, tutte le possibili condizioni di carico che producono le condizioni più sfavorevoli e quidi le sollecitazioni massime.
 - Se disattivata, il programma elabora i dati considerando le campate tutte caricate con i valori digitati.

Metodo di calcolo e verifica
T.A. S.L.
✓ Inserimento automatico armature
Cond. di carico
Analisi per tutte le condizioni di carico.
Modalità Tensioni
C Manuale
 Automatico
Modalità Carichi
C Manuale
 Automatico

Fig. 5.1 - Scelta modalità di calcolo.

5.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 5.2 - Guida grafica di aiuto all'input dei dati.

5.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali:

- Coefficiente di omogeneizzazione.
- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici 👔 🚺 Dati Geometrici	Luci e Carichi Appoggi
Calcestruzzo	
Classe del calcestruzzo:	C25/30 💌
Rresistenza caratteristica cubica (Rck)	: [daN/cm²] 300
Resistenza di calcolo:	[daN/cm²] 141,10
Resistenza di calcolo tangenziale:	[daN/cm²] 11,94
Resistenza di calcolo a trazione:	[daN/cm²] 30,70
Acciaio	
Tipo di acciaio:	Fe B44k
Resistenza caratteristica di snervamen	to: [daN/cm²] 4300
Resistenza di calcolo:	[daN/cm²] 3739,13
Coefficiente di omogeneizzazione:	15

Fig. 5.3 - Scheda Dati Elastici.

5.2.2 Dati Geometrici

In questa cartella vengono richiesti i dati geometrici del solaio e degli eventuali sbalzi:

- **Numero campate**: numero delle campate (senza limitazioni) che formano il solaio.
- Altezza solaio: altezza complessiva del solaio.
- Spessore soletta: spessore della soletta.
- Spessore nervatura: larghezza del travetto.
- Interasse travetti: distanza in asse tra due travetti.
- Copriferro: distanza dall'asse del tondino al filo travetto.
- **Fascia piena**: distanza tra i laterizi e il filo della trave-appoggio.

Per gli sbalzi sinistro e destro, se presenti, inserire:

- Luce: luce computata dall'asse della trave.
- Altezza: altezza complessiva dello sbalzo che può essere diversa dall'altezza del solaio.
- **Carico fisso**: carico permanente agente sullo sbalzo. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio relativo alla fascia di un metro di sbalzo.
- Carico accidentale: carico accidentale agente sullo sbalzo.

Dati Elastici	Dati Geometrici	Luci e Carichi	Appoggi
Solaio		- Sbalzo Sinistro	
Numero di campate:		Luce:	[cm] 205
Numero ul campace.		Altezza:	[cm] 35
Altezza solaio:	[cm] 24	Carico fisso strutturale:	[daN/m²] 427,4
C	() [Carico fisso non strutt.	[daN/m²] 163,0
Spessore soletta:		Carico acc.:	[daN/m²] 400
Spessore Nervatura:	[cm] 12	– Shalzo Destro	
		Luce:	[cm] 210
Interasse travetti:	[cm] 50	Altezza:	[cm] 30
Copriferro:	[cm] 3	Carico fisso strutturale:	[daN/m²] 374,6
		Carico fisso non strutt.	[daN/m²] 163,0
Fascia piena:	[cm] 10	Carico acc.:	[daN/m²] 400

Fig. 5.4 - Scheda Dati Geometrici.

5.2.3 Luci e Carichi

In questa cartella vanno inseriti per ogni campata del solaio:

- Luce: luce tra due appoggi.
- **Carico fisso**: carico permanente agente sullo sbalzo. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio relativo alla fascia di un metro di solaio.
- **Carico accidentale**: carico accidentale agente sulla campata.

	Dati Elastici	Dati Ge	ometrici	i Luci e Carichi I		Appoggi	
L	uci e Carichi						
	Campata numero	Luce [cm]	G1 fisso [daN/m²]	G2 fisso [daN/m²]	Qk1 v [daN/	var. 'm²]	
	1	640	311,2	283,0	45()	Copia
							Incolla
							Cancella
I							
	Carico accidental Il carico è positivo	e della campat o se verso il ba	a 1. 1880.				
	Selezione celle: I	D1:D1					

Fig. 5.5 - Scheda Luci e Carichi.

5.2.4 Risultati dell'elaborazione

Nella relazione sono evidenziati oltre ai dati elastici e geometrici:

- I valori caratteristici e di calcolo dei carichi per elaborazioni eseguite con il metodo degli stati limite.
- Le caratteristiche della sollecitazione Momento flettente e Taglio per un numero di sezioni preimpostato e per ogni condizione di carico. Tutti i valori sono riferiti alla fascia di solaio larga un metro.
- Le sollecitazioni massime in campata e sugli appoggi riferite ad un solo travetto.
- L'abbassamento massimo.
- L'area di ferro longitudinale massima necessaria superiormente ed inferiormente per un solo travetto.
- L'armatura di ripartizione della soletta.
- Le tensioni massime nel cls e nel ferro in campata e sugli appoggi.
- L'area di ferro longitudinale necessaria superiormente ed inferiormente.
- Il prospetto delle armature consigliate per un travetto con riferimento ai minimi diametri preimpostati.

5.3 Opzioni Solaio

Per accedere alle Opzioni Solaio, cliccare sull'icona ^{erz} sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Solaio o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

5.3.1 Sezione Armatura

- **Diametro minimo armatura principale.** Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- **Diametro minimo armatura di ripartizione**. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per l'armatura di ripartizione a partire da quello indicato.
- **Diametro minimo armatura a staffe.** Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- **Passo minimo delle staffe.** Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Ancoraggio diritto. Lunghezza di ancoraggio da adottare per i ferri longitudinali oltre i punti di lavoro di estremità del ferro.
- **Piega estremità.** Lunghezza da adottare per le estremità dei ferri diritti superiori ed inferiori e dei cavallotti secondo il modello scelto nel menu a tendina proposto.

Opzioni Solaio	×
Armatura Geometria Peso Proprio Quotat	ture
Diametri [mm] 12 Ø minimo armatura principale. [mm] 8 Ø minimo armatura ripartizione. [mm] 5 Ø minimo armatura a staffe. [mm] 7 Passo minimo delle staffe.	Ancoraggi [cm] 30 Ancoraggio diritto. [cm] 10 Piega estremità
	OK Annulla

Fig. 5.6 - Finestra opzioni, scheda Armatura.

5.3.2 Sezione Geometria

- Luce limite inserimento travetto di ripartizione. Valore oltre il quale per la campata è previsto l'inserimento del travetto di ripartizione (non superiore a 5 m).
- **Dimensione del cordolo estremità sbalzi.** Larghezza del cordolo in prossimità degli estremi degli eventuali sbalzi.
- **Dimensione profondità delle pignatte.** Dimensione delle pignatte nella direzione parallela all'orditura del solaio.
- **Numero di divisioni da elaborare.** Indica il numero delle parti in cui suddividere la luce della scala e per le quali poter disporre delle caratteristiche della sollecitazione nella relazione.

Opzi	oni Solaio		×
Arm	atura Geome	tria Peso Proprio Quotature	
	[cm] 200 [cm] 10 [cm] 25	Luce limite inserimento travetto di ripartizione. Dimensione del cordolo estremità sbalzi. Dimensione profondità delle pignatte.	
	5 Nu	mero di divisioni da elaborare per ciascuna campata.	
		OK. Annulla	1

Fig. 5.7 - Finestra opzioni, scheda Geometria.

5.3.3 Sezione Peso Proprio

Se si è scelto il calcolo automatico del carico permanente, questa opzione aiuta a valutare, selezionando ciascuna voce, il contributo del peso proprio dovuto all'intonaco, al massetto ed al pavimento. Per ogni voce è necessario poi inserire lo spessore ed il peso dell'unità di volume. L'ultimo campo, non editabile, indica il valore del peso proprio come risultato dei dati immessi nei campi che lo precedono.

• Incidenza Tramezzi. Spuntando questa voce si abilita l'inserimento di un sovraccarico forfettario dovuto alla presenza dei tramezzi altrimenti non computabili.

Opzioni Solaio			×
Armatura Geome	etria Peso Propr	rio Quotature	
✓ Intonaco:	Spessore [cm] 1,5	Peso Specific [daN/m²] 1800	co Peso Proprio [daN/m²] 27
Massetto:	[cm] 8	[daN/m²] 1200	[daN/m²] 96
Pavimento:	[cm] 2	[daN/m ³] 2000	[daN/m²] 40
Tipologia del d	carico: 🔿 G	à1-strutturale	G2-non strutturale
🔽 Incidenza T	ramezzi (G2) (i	in campata):	[daN/m²] 120
Selezionare gli eler	menti da computa	ire.	Annulla

Fig. 5.8 - Finestra opzioni, scheda Peso Proprio.

5.3.4 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Solaio		×
Armatura Geom	netria Peso Proprio Quotature	
Dimensioni	testo	
[mm] 10	Altezza del font per i titoli.	
[mm] 8	Altezza del font per le indicazioni.	
[mm] 7	Altezza del font per quotatura ferri.	
	OK Annulla	

Fig. 5.9 - Finestra opzioni, scheda Quotature.

5.4 Diagrammi e schemi di carico

Premendo il tasto Diagrammi della barra degli strumenti (oppure facendo clic sulla voce Diagrammi del Menu Vista) si apre una finestra divisa in tre riquadri. Sulla sinistra sono rappresentati gli schemi di carico che producono le sollecitazioni massime. Nella parte alta è riprodotto il diagramma inviluppo dei momenti flettenti relativo ad un solo travetto e, al passaggio del mouse, vengono evidenziati l'ascissa misurata a partire dall'appoggio di sinistra ed il valore del momento. In basso è rappresentato il diagramma del taglio con analoghe caratteristiche descritte per il momento.

Fig. 5.10 - Finestra diagrammi e schemi di carico.

5.5 Armatura

Dopo l'immissione dei dati della struttura, all'avvio dell'elaborazione, viene richiesto di scegliere tra la predisposizione del tutto automatica delle armature necessarie e la possibilità di gestire i ferri secondo le proprie esigenze.

5.5.1 Predisposizione automatica delle armature

Le armature vengono individuate a partire dai valori massimi delle caratteristiche di sollecitazione ed assegnando ai travetti un massimo di due ferri nella parte tesa. La scelta dei diametri (al massimo due) viene eseguita a partire dal diametro minimo indicato nelle opzioni del modulo.

5.5.2 Disposizione manuale e modifica delle armature

Scegliendo di personalizzare le armature o anche decidendo di modificare quelle proposte dal programma, basta selezionare con il mouse le armature desiderate per poi trascinarle nel punto voluto e rilasciare il tasto del puntatore. Dalla finestra delle proprietà che appare a questo punto, si possono fare tutte le scelte inerenti al ferro.

5.5.3 La finestra di interfaccia delle armature

Fig. 5.11 - Finestra di interfaccia delle armature del solaio.

L'interfaccia permette di analizzare e/o modificare le armature e comprende:

- la finestra principale dove, oltre alla sezione longitudinale del solaio, sono disegnati i ferri con le loro quotature;
- una finestra laterale dove sono elencate le icone delle armature longitudinali;
- una finestra superiore dove è possibile visualizzare alternativamente il diagramma del momento e del taglio con sovrapposizione dei rispettivi valori resistenti;
- una finestra nell'angolo superiore sinistro dove è visibile, in modo interattivo, la sezione del solaio, corredata di quote e posizione dei ferri, relativa alla posizione corrente del mouse nella finestra principale.

5.5.4 La barra delle armature

Sulla barra delle armature della finestra principale si trovano le icone che permettono una gestione agevole di alcune proprietà e funzioni dei ferri introdotti.

🏪 🎬 🚱 🖶 🛪 💈 폐 🖂 🛣 🖍 🖕 🍫 🍫 🏦 🐺 🗙 🚟 🛛 🎲 🏀 🔽 🔽 Snap 🦻
--

Fig. 5.12 - Barra delle armature.

Carica armatura ultimo salvataggio: se esistente, permette di caricare

l'armatura precedentemente salvata eliminando quella corrente.

- Salva armatura corrente: salva l'armatura disposta previo salvataggio della struttura.
- 🖾 **Proprietà**: visualizza la finestra Proprietà del ferro selezionato.
- Given Sense Finestra grafici → Momento resistente: visualizza nella finestra superiore il diagramma del momento flettente e aggiorna quello resistente.

- Given Sense Finestra grafici → Taglio resistente: visualizza nella finestra superiore il diagramma del taglio e aggiorna quello resistente.
- Aggiorna finestra grafici: aggiorna il diagramma corrente della finestra superiore.
- Allinea agli appoggi: estende le estremità del ferro selezionato fino agli assi degli appoggi della campata corrente.
- Centra sull'appoggio: sposta il ferro selezionato fino a centrarlo sull'appoggio prossimo al puntatore.
- Aumenta numero ferri: aumenta il numero di ferri rappresentato dal ferro selezionato.
- Riduci numero ferri: riduce il numero di ferri rappresentato dal ferro selezionato.
- Aumenta diametro: aumenta il diametro del ferro selezionato.
- **Riduci diametro**: riduce il diametro del ferro selezionato.
- **X** Elimina selezione: elimina il ferro selezionato.
- Elimina longitudinali: permette di eliminare tutti i ferri longitudinali presenti.
- Aggiorna calcoli: riesegue le verifiche necessarie dopo una variazione delle armature.
- Snap 1 permette, se attivato, spostamenti del mouse su una griglia con passo indicato a fianco.

5.5.5 Funzioni sulla barra di stato

Sulla barra di stato, nella parte bassa dello schermo, sono presenti un campo che indica lo stato attuale dello SNAP (ON/OFF) ed un campo che indica lo stato attuale della funzione ORTHO (ON/OFF). Lo stato di queste funzioni può essere cambiato facendo un doppio clic sul campo medesimo.

Fig. 5.13 - Funzioni sulla barra di stato

Con la funzione ORTHO si limita il puntatore a spostamenti solo orizzontali o verticali. Tale funzione si rende utile per spostare un ferro senza perdere l'allineamento oppure per ottenere uno stiramento del ferro lungo il suo asse.

5.5.6 Finestra proprietà dei ferri longitudinali

La visualizzazione della finestra delle proprietà di un ferro si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un ferro già introdotto si può procedere in due modi:

- selezionare un ferro e premere il tasto **Proprietà** sulla barra delle armature;

- posizionare il puntatore su un ferro, premere il tasto destro del mouse e selezionare la voce di menù **Proprietà**.

r
Ferro Longitudinale ×
Posizione 4 - Piegato inferiore
Numero di ferri 1 💌 Ø 12 💌
L principale
Lunghezza di Ancoraggio Sinistra Destra I in centimetri 30 30 30 IIIIIIIIIIIIIIIIIIIIIIIIIIIII
Estremità Geometria Quotatura
Sinistra Destra ▲x ·29 cm 18 cm ▲y ·29 cm -18 cm
0K Annulla

Fig. 5.14 - Finestra proprietà delle armature longitudinali.

La finestra delle proprietà consente di configurare o modificare le caratteristiche di un ferro.

- **Posizione e denominazione del ferro**: indicano la posizione che il ferro occupa nella lista dei ferri e la tipologia del ferro selezionato.
- **Numero dei ferri e diametro**: il diametro ed il numero di ferri rappresentati da quello selezionato.
- Lunghezza principale e riferimento: da due liste a discesa si possono selezionare la lunghezza principale espressa in termini di campata ed il riferimento a partire dal quale va valutata la lunghezza stessa (es.: se le scelte fatte fossero 1+1/4 di

campata e *da sinistra*, avremmo, partendo da sinistra, una lunghezza principale pari alla luce della campata corrente più un quarto della luce della campata successiva). In fase di inserimento di un nuovo ferro, viene proposta una lunghezza iniziale pari alla luce della campata corrente e che potrà essere modificata sia operando una scelta diversa dalla lista e sia intervenendo sulla scheda **Geometria** descritta in seguito. Nel caso in cui la lunghezza principale venga assegnata tramite la scheda Geometria, i due campi predisposti risulteranno vuoti.

- Lunghezza di ancoraggio: è la lunghezza in aggiunta a quella principale e della quale non se ne tiene conto nelle verifiche e nella definizione dei diagrammi resistenti. questo parametro può essere inserito in duplice modo:
 - esprimendolo in centimetri;
 - o esprimendolo in numero di diametri.
- Scheda Estremità. In questa scheda vanno inseriti il tipo di estremità sia destra che sinistra da selezionare da un elenco a discesa ed i valori come indicato nell'immagine di fig. 5.13.

Fig. 5.15 - Tipi di estremità per le armature longitudinali.

Scheda Geometria. In questa sezione è possibile modificare il punto di inserimento del ferro (estremo di sinistra) attraverso le coordinate X e Y e la geometria mediante una tabella dove il ferro viene suddiviso in singoli tratti ad ogni deviazione lungo il suo sviluppo. Per ogni tratto si possono modificare la lunghezza assoluta del tratto stesso e/o le proiezioni sugli assi x e y mentre la colonna relativa all'inclinazione del tratto è solo di tipo informativo. Il tratto interessato dalla modifica viene evidenziato in rosso.

Estremità		Geometria		Quotatura	
(Coord. origine (cm]: × 178	Y 58)	
Tratto	L [cm]	Dx [cm]	Dy [cm]	Angolo [*]	
1	224,000	224,000	0,000	0,000000	
2	25,456	18,000	18,000	-45,000000	
3	140,000	140,000	0,000	0,000000	
4	25,456	18,000	-18,000	45,000000	
5	162,000	162,000	0,000	0,000000	

Fig. 5.16 - Scheda di modifica della geometria del ferro longitudinale.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del ferro nonché decidere se mostrare:
 - la scritta **Pos.** seguita da un numero identificativo;
 - la scritta inf, sup, par ad indicare la posizione del tratto (inferiore, superiore o intermedia per ferri di parete). -Solo per i moduli ScaRam e ScaGin-;
 - la lunghezza totale del ferro comprendente le lunghezze di ancoraggio e le estremità;
 - il numero dei ferri ed il diametro;
 - le quotature parziali dei singoli tratti.

Estremità	Geometria	Quotatura
🔽 Mostra la scritta F	os.x 🔲 Mostra ind	icatore inf/sup/par
Font:	7, Arial	
Colore: 💻		
🔽 Mostra lunghezza	i totale 🔽 Mostra nu	mero ferri e diametro
Font:	9, Arial	
Colore: 💻		
Mostra quotature	parziali	
Font:	7, Arial	
Colore:		

Fig. 5.17 - Scheda di modifica delle quotature del ferro longitudinale.

5.5.7 Modificare senza la finestra proprietà

Alcune caratteristiche del ferro possono essere modificate senza l'ausilio della finestra proprietà.

- Punto origine: selezionare il ferro e tenendo premuto il tasto sinistro del mouse trascinare il ferro nel punto voluto. In alternativa, dopo la selezione del ferro, si possono utilizzare i tasti direzionali della tastiera. In entrambi i casi il movimento avviene lungo una griglia definita con la funzione SNAP e può essere vincolato dalla funzione ORTHO.
- Numero di ferri: selezionare il ferro con il mouse e, sulla barra delle armature, premere il tasto nuna sola volta per aumentare il numero di ferri di una unità, invece il tasto per ridurne il numero. Lo stesso risultato si ha premendo il tasto destro del mouse quando è posizionato sopra al ferro e scegliere Aumenta numero ferri oppure Riduce numero ferri dal menù che appare.
- Diametro: selezionare il ferro e, sulla barra delle armature, premere il tasto per aumentare il diametro ed il tasto per

diminuirlo. Anche in questo caso si può usare il tasto destro del mouse e quindi selezionare **Aumenta diametro ferro** oppure **Riduce diametro ferro** per ottenere lo stesso effetto.

- Allinea agli appoggi: per riposizionare un ferro in modo da estendere gli estremi fino agli assi degli appoggi della campata corrente, premere il tasto sulla barra delle armature oppure scegliere Allinea agli appoggi dal menu che appare premendo il tasto destro.
- Centra sull'appoggio: per riposizionare un ferro in modo da risultare centrato sull'appoggio più vicino al puntatore, premere il tasto sulla barra delle armature oppure scegliere Centra sull'appoggio dal menu che appare premendo il tasto destro.
- Elimina selezione: elimina il ferro selezionato se viene premuto il tasto sulla barra delle armature oppure selezionando Elimina ferro dal menù tasto destro del mouse.
- Elimina longitudinali: elimina in modo permanente tutti i ferri quando viene premuto il tasto sulla barra delle armature.
- Modifica geometria: con il solo uso del mouse e con l'aiuto delle funzioni SNAP e ORTHO si può modificare nel modo voluto la lunghezza di un singolo tratto del ferro. Al momento della selezione, sugli estremi di ogni singolo tratto del ferro appaiono delle maniglie di colore grigio; facendo doppio clic su una maniglia, questa assume il colore rosso. A questo punto cliccando su una maniglia diversa da quella selezionata e trascinando il mouse col tasto sinistro premuto, l'effetto sarà quello di uno stiramento del solo tratto attiguo alla maniglia rossa e dalla parte del puntatore.

5.6 Esempio di calcolo

Calcolo e verifica agli Stati Limite di un solaio in latero-cemento a tre campate gettato in opera di altezza (20+4) *cm* con sbalzo sinistro di luce 120 *cm* e altezza (16+4) *cm*.

Sono utilizzati calcestruzzo di classe Rck 300 e barre del tipo Feb38k.

ELABORATI GRAFICI PRODOTTI:

Fig. 5.18 - Inviluppo dei diagrammi del momento e momento resistente.

Fig. 5.19 - Sezione longitudinale del travetto e distinta armatura.

Fig. 5.20 - Disegno della pianta carpenteria.

Fig. 5.21 - Sezione longitudinale e trasversale del solaio.

RELAZIONE DI CALCOLO

SOLAIO IN LATERO-CEMENTO

Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Numero di campate		2
Interasse Travetti	[cm]	40
Spessore Travetti	[cm]	8
Spessore Soletta	[cm]	4
Larghezza fascia piena	[cm]	10
Copriferro	[cm]	2
Coeff. di omogeneizzazione		15
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	300
Resistenza caratteristica del cls (f _{ck})	[kg/cm ²]	249

Resistenza di calcolo del cls ($\alpha \cdot f_{cd}$) Tipo di acciaio	[kg/cm ²]	132,3 Fe B 38k
Tensione caratteristica di snervamento (f _{yk})	[kg/cm ²]	3750
Resistenza di calcolo dell'acciaio (f _{yd})	[kg/cm ²]	3260,9

Geometria e valori caratteristici e di calcolo dei carichi

Campata	Luce	Altezza	Inerzia	$G_{k \text{ perm.}}$	$Q_{\mathrm{k}\mathrm{var.}}$	G _{d perm.}	$Q_{d \ var.}$
n.	[cm]	[cm]	[m ⁴]	[kg/m ²]	[kg/m ²]	[kg/m ²]	[kg/m ²]
1	435	24	0,000427	373,5	200	522,9	300
2	510	24	0,000427	373,5	200	522,9	300
Sbalzo							
sin.	120	20	0,000251	334,3	400	468,0	600

Dimensioni appoggi

Appoggio	Base	Altezza
n.	[cm]	[cm]
1	30	50
2	60	24
3	30	50

CARATTERISTICHE DELLE SOLLECITAZIONI

Sezione [m]	Momento [kgm]	Taglio [kg]
Condizione	di carico n. 1:	
campata 1		
0,00	-337,0	1329,4
1,09	622,1	434,5
2,18	608,0	-460,4
3,26	-379,3	-1355,3
4,35	-2339,9	-2250,2
campata 2		
0,00	-2339,9	2557,2
1,28	251,7	1508,0
2,55	1505,5	458,8
3,83	1421,6	-590,4
5,10	0,0	-1639,6
Condizione	di carico n. 2:	
campata 1		
0,00	-337,0	1450,4
1,09	753,7	555,5
2,18	871,2	-339,4

3,26	15,5	-1234,3
4,35	-1813,5	-2129,2
campata 2		
0,00	-1813,5	1689,0
1,28	-85,0	1022,3
2,55	793,3	355,6
3,83	821,7	-311,1
5,10	0,0	-977,8
Condizione o	di carico n. 3:	
campata 1		
0,00	-769,0	851,3
1,09	-152,4	282,6
2,18	-154,3	-286,0
3,26	-774,5	-854,7
4,35	-2013,2	-1423,3
campata 2		
0,00	-2013,2	2493,1
1,28	496,7	1443,9
2,55	1668,8	394,8
3,83	1503,3	-654,4
5,10	0,0	-1703,6

SOLLECITAZIONI MASSIME E ARMATURE (per un travetto)

Momento massimo positivo (campata 2) Momento massimo negativo (appoggio 2) Taglio massimo (appoggio 2) Armatura massima inferiore (campata 2) Armatura massima superiore (appoggio 2) Armatura di ripartizione soletta	[kgm] [kgm] [cm ²] [cm ²]	705,4 -935,9 2557,2 1,1 1,4 ø8/30 cm
Verifica allo S.L.U. (sez. app. 2)		
Asse neutro (x/d = 0,14 < 0,45) Momento resistente ultimo (M_{Rd}) Resistenza a taglio del cls (V_{Rd1})	[cm] [kgm] [kg]	3,1 2303,5 3685,0
Verifica allo S.L.U. (sez. campata 2)		
Asse neutro (x/d = $0,12 < 0,45$) Momento resistente ultimo (M _{Rd})	[cm] [kgm]	2,6 1553,0
Verifica allo stato limite di deformazione (camp. 2)		
Abbassamento max per comb. rara Abbassamento max per comb. quasi perm.	[mm] [mm]	3,8 4,4

PROSPETTO ARMATURE (per un solo travetto)

Г

			7	Monconi
	Arm. inf.	Arm. sup.	Appaggia 1	
Campata 1	2ø12	1ø12	Appoggio I	
		1012	Annoggio 2	
Campata 2	2ø12			
r			Appoggio 3	1ø12
Sbalzo sin.	1ø12	1ø12		
Chalza dag			_	
sparzo des.				

COMPUTO MATERIALI (per un metro di solaio)

Lista Ferri Longitudinali per travetto

Pos.	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
1	12	568	1	568	5,04
2	12	193	1	193	1,71
3	12	692	1	692	6,14
4	12	703	1	703	6,24
5	12	400	1	400	3,55
6	12	498	1	498	4,42
7	12	573	1	573	5,09

Totali Longitudinali per travetto

	Ltot [m]	Massa [kg]
Totale Ferri Ø12	36,27	32,19

Lista Ripartitori e Staffe

Riferimento	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
ripartitori solaio	8	100	33	3300	13,02
cordolo sbalzo sin.	10	100	2	200	1,23
travetto ripartizione	10	100	8	800	4,93
staffe trav. ripart.	8	72	10	720	2,84

Totali Ripartitori e Staffe

	Ltot [m]	Massa [kg]
Totale Ø8	40,2	15,86
Totale Ø10	10	6,16

Armatura (Fe B 38 k controllato)	[kg]	88
Calcestruzzo (R _{ck} =300)	[m ³]	1,12
Laterizi (H=20)	[n.]	62
Laterizi (H=16)	[n.]	6
Percentuale di armatura in peso	[%]	3,12
Incidenza peso armatura sul volume cls	[kg/m ³]	78,07

🚟 trave continua

6.1 Generalità

All'inizio di un nuovo lavoro occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, opzioni relative ai carichi, alle tensioni ammissibili e alle condizioni di carico:

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.
- Opzione Analisi per tutte le condizioni di carico:
 - Se attivata, il programma individua automaticamente, durante l'elaborazione, tutte le possibili condizioni di carico che producono le condizioni più sfavorevoli e quindi le sollecitazioni massime.
 - Se disattivata, il programma elabora i dati considerando le campate tutte caricate con i valori digitati.

⊢ Metodo di calcolo e veri	Metodo di calcolo e verifica					
T.A.	S.L.					
✓ Inserimento automatico armature						
🔽 Trave dell'ultimo impal	cato					
Cond. di carico						
Analisi per tutte le co	Analisi per tutte le condizioni di carico.					
Modalità Tensioni						
C Manuale						
 Automatico 						
Modalità Carichi						
Manuale						
C Automatico						

Fig. 6.1 - Scelta modalità di calcolo.

6.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 6.2 - Guida grafica all'input dei dati.

6.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali:

- Coefficiente di omogeneizzazione.
- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici Ca	mpate	Appoggi	Tipo Caric	hi Distribuiti	Concentrati	Coppie
Trave						
Numero di	campate:				2	
Copriferro				[cm]	2	
- Calcestruzz	0					
Classe de	calcestru	1220:		C25/30	•	
Rresistenz	a caratte	ristica cubica (l	Rck):	[daN/cm²]	300	
Resistenz	a di calco	lo:		[daN/cm²]	141,1	
Resistenz	a di calco	lo tangenziale:		[daN/cm²]	11,94	
Resistenz	a di calco	lo a trazione:		[daN/cm²]	30,7	
Acciaio						
Tipo di ac	ciaio:			B450C	•	
Resistenz	a caratteri	istica di snerva	mento:	[daN/cm²]	4500	
Resistenz	a di calco	lo:		[daN/cm²]	3913,04	
Coefficien	te di omog	geneizzazione:			15	

Fig. 6.3 - Scheda Dati Elastici.

6.2.2 Dati Geometrici e Peso Proprio

In questa cartella vanno inseriti per ogni campata le caratteristiche geometriche ed il peso proprio:

- Luce: distanza tra due appoggi.
- Peso Proprio: peso di un metro di trave. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio sulla base dei dati della sezione per quella campata.
- Base Anima: per sezioni a T è il valore della base minore; per sezioni rettangolari può essere posto pari a zero oppure pari alla base maggiore indifferentemente.
- Base Maggiore: rappresenta il valore della base maggiore.
- Altezza Ala: per sezioni a T è lo spessore dell'ala; per sezioni rettangolari può essere posto pari a zero oppure pari all'altezza totale indifferentemente.

D	ati Elastic	i Car	npate	Appoggi	Tipo	Carichi	Distribuiti	Conce	entrati	Coppie
C	Dati Geometrici e Peso Proprio									
	Camp.	Luce	Peso	Peso	Base	Base	Altezza	Altezza		Copia
	n.	[cm]	[daN/m]	[daN/m]	[cm]	[cm]	[cm]	[cm]		Incolla
	sb. sx	0	0	0	0	0	0	0		
	1	300	390	0	60	60	26	26		Cancella
	2	400	375	0	30	30	50	50		
	sb. dx	0	0	0	0	0	0	0		Annulla
	Base minore campata 2									
1	Selezione celle: D3:D3									

Fig. 6.4 - Scheda Campate.

6.2.3 Definizione Appoggi

In questa cartella vanno inseriti il nome e le dimensioni degli appoggi:

- Denominazione: carattere alfanumerico atto a descrivere il singolo appoggio.
- Larghezza Appoggio: ingombro del pilastro.

D	ati Elastici Campate	Appoggi	Tipo Carichi	Distribuiti	Concentrati	Coppie
C	efinizione Appog	lgi	, 			
	Appoggio n.	Denomina	azione	Larghezza Appoggio [cm]		Copia Incolla
	1	A		30		
	2	В		30		Cancella
	3	C		40		Annulla
					_	· · · · · · · · · · · · · · · · · · ·
	Denominazione appoggio 1					
1	Selezione celle: A1:A1					

6.2.4 Tipo di Carichi

In questa cartella è possibile inserire il tipo ed il numero di carichi che si desidera assumere per ogni campata:

- Carichi Distribuiti: numero di carichi distribuiti di tipo lineare che si prevedono per la campata.
- Carichi Concentrati: numero di carichi concentrati che si prevedono per la campata.
- Coppie: numero di coppie concentrate che si prevedono per la campata.

D	ati Elastici 📜 (Campate	Appoggi	Tipo Carichi	Distribuiti	Concentrati	Coppie
N	umero e ti	po di c	arichi pr	esenti			
1							1
	Campata n.	Di	Carichi stribuiti	Carichi Concentrati	Сорріє	. _	Copia
							Incolla
	1	_	1	1			Cancella
	2		1		1		
							Annulla
	Numero di carichi concentrati sulla campata 1						
1	Selezione celle:	B1:B1					

Fig. 6.6 - Scheda Tipo Carichi.

6.2.5 Carichi Distribuiti

In questa cartella, se abilitata, vanno definiti i carichi distribuiti per ogni campata.

Tali carichi devono essere di tipo lineare (rettangolari, trapezoidali, triangolari) e possono avere qualsiasi ampiezza ed occupare qualsiasi posizione:

- Carico Iniziale: valore iniziale del carico distribuito previsto per la campata.
- Carico Finale: valore finale del carico distribuito previsto per la campata.
- Distanza da sinistra: ascissa, dall'appoggio sinistro, alla quale il carico inizia ad essere presente.
- Ampiezza: porzione della luce sulla quale agisce il carico.

D	ati Elas	tici	Campate	Appogg	ji Tipo	Carichi	Distribu	iti Conc	entrati	Coppie
С	arich	ni Dis	tribuiti							
							1100 (0	m) - 200		
							Luce (c	m) = 300		
	Camp.	Carico	Carico	Carico Finale	Distanza da	Ampiezza	Codice	Favorevole		Copia
	n.	n.	[daN/m]	[daN/m]	Sinistra [cm]	[cm]	Carico	verifiche		Incolla
	1	1	1000	1500	0	300	2			
	2	1	800	800	0	400	2			Cancella
										Annulla
	Valore iniziale del carico distribuito n. 1 sulla campata 1.									
	II CARCO E DOSIGAO SE AELSO IL DESSO.									
1	Selezior	ne celle:	A1:A1							

Fig. 6.7 - Scheda Carichi Distribuiti.

6.2.6 Carichi Concentrati

In questa cartella, se abilitata, vanno definiti i carichi concentrati per ogni campata:

- Forza: valore della forza concentrata.
- Distanza da sinistra: ascissa, dall'appoggio sinistro, alla quale la forza è applicata.

D	ati Elastici	Campate	e 🗍 Appoggi	Tipo Carichi 🎽	Distribu	iiti Con	centrati	Coppie
c	arichi C	oncent	rati					
					Luce (c	:m) = 300	_	
	Camp. n.	Carico n.	Forza [daN]	Distanza da Sinistra	Codice Forza	Favorevole alle		Copia
	1	1	400	120	F	Termene	- 1	Incolla
	- 1	1	400	120	5			Cancella
								1
								Annulla
ľ		ntrata n 1 a	ulla compata 1				_	
	La forza è p	ositiva se ve	erso il basso.					
	Selezione ce	elle: A1:A1						
	000210110 00							

Fig. 6.8 - Scheda Carichi Concentrati.

6.2.7 Coppie Concentrate

In questa cartella, se abilitata, vanno definiti i momenti applicati per ogni campata:

- Coppia: valore della coppia concentrata.
- Distanza da sinistra: ascissa, dall'appoggio sinistro, alla quale la coppia è applicata.

Copia						
Incolla						
Cancella						
Annulla						
La coppia è positiva se oraria.						

Fig. 6.9 - Scheda Coppie Concentrate.

6.2.8 Risultati dell'elaborazione

Nella relazione sono evidenziati oltre ai dati elastici e geometrici:

- I valori caratteristici e di calcolo dei carichi per elaborazioni eseguite con il metodo degli stati limite.
- Le caratteristiche della sollecitazione Momento flettente e Taglio per un numero di sezioni preimpostato e per ogni condizione di carico.
- Le sollecitazioni massime in campata e sugli appoggi.
- L'abbassamento massimo.
- L'area di ferro longitudinale principale massima necessaria.
- L'area di ferro longitudinale di parete massima necessaria.
- Il diametro e il passo minimo per le staffe.
- Le tensioni massime nel cls e nel ferro in campata e sugli appoggi.
- L'area di ferro longitudinale necessaria superiormente ed inferiormente.
- Il prospetto di tutte le armature consigliate con riferimento ai minimi diametri preimpostati.

6.3 Opzioni Trave Continua

Per accedere alle Opzioni Trave Continua, cliccare sull'icona ^{erz} sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Trave Continua o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

6.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo ferri di parete. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per eventuali ferri di parete a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Ancoraggio longitudinale. Lunghezza di ancoraggio da adottare per i ferri diritti superiori ed inferiori e per i cavallotti.
- Piega estremità. Lunghezza da adottare per le estremità dei ferri diritti superiori ed inferiori e dei cavallotti secondo il modello scelto nel menu a tendina proposto.
- Ancoraggio staffa. Lunghezza di ancoraggio delle estremità delle staffe.
- Taglio affidato ai ferri di parete. Percentuale del taglio da affidare ai ferri di parete con valore limite pari al 50%.
- Taglio affidato ai sagomati. Percentuale del taglio affidato a ferri sagomati con valore limite pari al 40%.

Opzioni Trave Continua						
Armatura Divisioni Luce Carichi Fissi Quotature						
Diametri	Ancoraggi					
[mm] 12 Ø min. armatura principale	[cm] 40 Ancoraggio longitudinale					
[mm] 10 Ø min. armatura di parete	[cm] 15 Piega estremità					
[mm] 8 Ø min. armatura a staffe	[cm] 8 Ancoraggio staffa					
[cm] 5 Passo minimo delle staffe	[%] 50 Taglio affidato ai ferri di parete					
	[%] 40 Taglio affidato ai sagomati					
	OK Annulla					

Fig. 6.10 - Finestra opzioni, scheda Armatura.

6.3.2 Sezione Divisioni campata

Numero di divisioni da elaborare. Indica il numero delle parti in cui suddividere la luce della scala e per le quali poter disporre delle caratteristiche della sollecitazione nella relazione.

Opzioni Trave Continua							
Armatura	Divisioni Luce Carichi Fissi Quotature						
E							
10 Numero di divisioni da elaborare per ciascuna campata.							
	OK						

Fig. 6.11 - Finestra opzioni, scheda Divisioni Luce.

6.3.3 Sezione Carichi Fissi

Incidenza Muratura. Spuntando questa voce si abilita l'inserimento del sovraccarico dovuto alla presenza della muratura. Successivamente è possibile scegliere di inserire le dimensioni ed il peso specifico del muro o, in alternativa, direttamente il valore del carico distribuito.

Opzioni Tra	ve Continua			×			
Armatura Divisioni Luce Carichi Fissi Quotature							
🗌 Incidenza Muratura (G2)							
Valutazione attraverso la geometria							
	Altezza Spessore Peso Specifico		Specifico				
[cm] 400 [cm] 30 [daN/m ³] 800							
Immissione diretta del valore							
Peso distribuito [daN/m] 960							
Selezionare gli elementi da computare. OK Annulla							

Fig. 6.12 - Finestra opzioni, scheda Carichi Fissi.
6.3.4 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Trave Continua	×
Armatura Divisioni Luce Carichi Fissi Quotature	
Dimensioni testo	
[mm] 12 Altezza del font per i titoli.	
[mm] 8 Altezza del font per le indicazioni.	
[mm] 7 Altezza del font per la quotatura dei ferri.	
OKAnnulla	

Fig. 6.13 - Finestra opzioni, scheda Quotature.

6.4 Diagrammi e schemi di carico

Premendo il tasto Diagrammi della barra degli strumenti (oppure facendo clic sulla voce Diagrammi del Menu Vista) si apre una finestra divisa in tre riquadri. Sulla sinistra sono rappresentati gli schemi di carico che producono le sollecitazioni massime. Nella parte alta è riprodotto il diagramma inviluppo dei momenti flettenti e, al passaggio del mouse, vengono evidenziati l'ascissa misurata a partire dall'appoggio di sinistra ed il valore del momento. In basso è rappresentato il diagramma del taglio con analoghe caratteristiche descritte per il momento.

Fig. 6.14 - Finestra diagrammi e schemi di carico.

6.5 Armatura

Dopo l'immissione dei dati della struttura, all'avvio dell'elaborazione, viene richiesto di scegliere tra la predisposizione del tutto automatica delle armature necessarie e la possibilità di gestire i ferri secondo le proprie esigenze.

6.5.1 La finestra di interfaccia delle armature

Fig. 6.15 - Finestra di interfaccia delle armature della trave continua.

L'interfaccia permette di analizzare e/o modificare le armature e comprende:

- la finestra principale dove, oltre alla sezione longitudinale della trave, sono disegnati i ferri con le loro quotature;
- tre finestre laterali dalle quali si selezionano i ferri longitudinali, i ferri di parete e le staffe da inserire nella trave;
- una finestra superiore dove, ad ogni clic del mouse, si alternano le visualizzazioni della distinta staffe, del diagramma del momento e del taglio con sovrapposizione dei rispettivi valori resistenti;
- una finestra nell'angolo superiore sinistro dove è visibile, in modo interattivo, la sezione della trave con quote e posizione dei ferri, relativa alla posizione corrente del mouse nella finestra principale.

6.5.2 Predisposizione automatica delle armature

In fase di elaborazione dei dati introdotti per la trave, rispondere affermativamente alla richiesta di scegliere il tipo di inserimento automatico per le armature. Le armature vengono individuate a partire dai valori massimi delle caratteristiche di sollecitazione. La scelta dei diametri (al massimo due) viene eseguita a partire dal diametro minimo indicato nelle opzioni del modulo.

6.5.3 Disposizione manuale e modifica delle armature

Scegliendo di personalizzare le armature basta selezionare con il tasto sinistro del mouse le armature desiderate, trascinarle nel punto voluto e rilasciare il tasto del puntatore. Dalla finestra delle proprietà che appare a questo punto, si possono effettuare tutte le scelte inerenti al ferro.

- Introdurre un ferro longitudinale. Nella finestra Armature Longitudinali sono elencati 8 tipi di ferro longitudinale che è possibile inserire nella trave. Ogni tipo di ferro è rappresentato da un'icona che lascia intendere quale sia la sua morfologia e la posizione che prenderà all'interno della trave. Sono disponibili due ferri dritti (inferiore e superiore), quattro piegati e due sagomati a molla per gli sbalzi.
- **Introdurre un ferro di parete.** Nella finestra Ferri di Parete è raffigurata un'icona con la quale si possono inserire nella trave i ferri di parete utili per assorbire parte del taglio
- **Introdurre un blocco di staffe.** Nella finestra Staffe si hanno a disposizione 4 tipologie di icone il cui scopo è solo quello di migliorare e velocizzare l'inserimento delle staffe.
 - Disposizione differenziata agli estremi: questo tipologia consente di posizionare contemporaneamente tre blocchi di staffe, due in prossimità degli appoggi ed uno centrale in modo da poterne differenziare il passo e, allo stesso tempo, possano risultare contigui.
 - Disposizione differenziata a sinistra: in questo caso i blocchi introdotti sono due con quello più corto a sinistra.
 - Disposizione differenziata a destra: qui i blocchi introdotti sono ancora due con quello più corto a destra.
 - Disposizione uniforme: con questa scelta si ottiene un solo blocco uniforme che occupa l'intera campata.

Dopo aver effettuato la scelta desiderata e trascinato il mouse in corrispondenza della campata voluta, appare la finestra proprietà attraverso la quale si possono modificare i parametri relativi ad ogni ferro o gruppo di staffe prima di premere il tasto di conferma.

6.5.4 La barra delle armature

Sulla barra delle armature della finestra principale si trovano le icone che permettono una gestione agevole di alcune proprietà e funzioni dei ferri introdotti.

🏪 📸 🛃 🚽 🍮 💵 🕰 😭	n. 📭 🍫 🍫 🔝 🐺 🗙 👾 🕱 罢 🛛 🚸	⊽ Snap 5
	Fig. 6.16 - Barra delle armature.	

 Carica armatura ultimo salvataggio: se esistente, permette di caricare l'armatura precedentemente salvata eliminando quella corrente.

- Salva armatura corrente: salva l'armatura disposta previo salvataggio della struttura.
- 🖻 Proprietà: visualizza la finestra Proprietà del ferro selezionato.
- Gain Timestra grafici → Momento resistente: visualizza nella finestra superiore il diagramma del momento flettente e aggiorna quello resistente.
- Garage Sinestra grafici → Taglio resistente: visualizza nella finestra superiore il diagramma del taglio e aggiorna quello resistente.
- Garage Series Finestra grafici → Distinta staffe: visualizza nella finestra superiore la distinta delle staffe per ogni campata.
- Aggiorna finestra grafici: aggiorna la visualizzazione corrente della finestra superiore.
- Allinea al copriferro: adegua l'altezza del blocco di staffe selezionato alla campata corrente e lo riposiziona rispettando il copriferro.
- Allinea agli appoggi: estende le estremità del ferro selezionato fino agli assi degli appoggi della campata corrente.
- Centra sull'appoggio: sposta il ferro selezionato fino a centrarlo sull'appoggio prossimo al puntatore.
- Aumenta numero ferri: aumenta il numero di ferri rappresentato dal ferro selezionato.
- Riduci numero ferri: riduce il numero di ferri rappresentato dal ferro selezionato.
- Aumenta diametro: aumenta il diametro del ferro selezionato.
- 🍫 Riduci diametro: riduce il diametro del ferro selezionato.
- 🟦 Aumenta passo staffe: aumenta il passo del blocco di staffe selezionato.
- Riduci passo staffe: riduce il passo del blocco di staffe selezionato.
- Elimina selezione: elimina il ferro selezionato.
- 🕅 Elimina staffe: permette di eliminare tutti i blocchi di staffe presenti.
- Elimina longitudinali: permette di eliminare tutti i ferri longitudinali presenti.
- 🚟 Elimina tutto: elimina sia i ferri longitudinali che i blocchi di staffe presenti.
- Aggiorna calcoli: riesegue le verifiche necessarie dopo una variazione delle armature.

• **Snap 1** permette, se attivato, spostamenti del mouse su una griglia

con passo indicato a fianco.

6.5.5 Funzioni sulla barra di stato

Sulla barra di stato, nella parte bassa dello schermo, sono presenti un campo che indica lo stato attuale dello SNAP (ON/OFF) ed un campo che indica lo stato attuale della funzione ORTHO (ON/OFF). Lo stato di queste funzioni può essere cambiato facendo un doppio clic sul campo medesimo.

Con la funzione ORTHO si limita il puntatore a spostamenti solo orizzontali o verticali. Tale funzione si rende utile per spostare un ferro senza perdere l'allineamento oppure per ottenere uno stiramento del ferro lungo il suo asse.

6.5.6 Finestra proprietà dei ferri longitudinali

La visualizzazione della finestra delle proprietà di un ferro si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un ferro già introdotto si può procedere in due modi:

- selezionare un ferro e premere il tasto Proprietà sulla barra delle armature;

- posizionare il puntatore su un ferro, premere il tasto destro del mouse e selezionare la voce di menù Proprietà.

Ferro Longitudinale
Posizione 2 - Diritto superiore
Numero di ferri 2
L principale
Lunghezza di Ancoraggio Sinistra Destra in centimetri 40 18 in numero di diametri
Estremità Geometria Quotatura
Sinistra Destra
Δx 0 cm 0 cm
∆y •15 cm •15 cm
$\Delta x L_{Ancor}$
OK Annulla

Fig. 6.18 - Finestra proprietà delle armature longitudinali.

La finestra delle proprietà consente di configurare o modificare le caratteristiche di un ferro.

- Posizione e denominazione del ferro: indicano la posizione che il ferro occupa nella lista dei ferri e la tipologia del ferro selezionato.
- Numero dei ferri e diametro: il diametro ed il numero di ferri rappresentati da quello selezionato.
- Lunghezza principale e riferimento: da due liste a discesa si possono selezionare la lunghezza principale espressa in termini di campata ed il riferimento a partire dal quale va valutata la lunghezza stessa (es.: se le scelte fatte fossero 1+1/4 di campata e da sinistra, avremmo, partendo da sinistra, una lunghezza principale pari alla luce della campata corrente più un quarto della luce della campata successiva). In fase di inserimento di un nuovo ferro, viene proposta una lunghezza iniziale pari alla luce della campata corrente e che potrà essere modificata sia operando una scelta diversa dalla lista e sia intervenendo sulla scheda Geometria descritta in seguito. Nel caso in cui la lunghezza principale venga assegnata tramite la scheda Geometria, i due campi predisposti risulteranno vuoti.
- Lunghezza di ancoraggio: è la lunghezza in aggiunta a quella principale e della quale non se ne tiene conto nelle verifiche e nella definizione dei diagrammi resistenti. questo parametro può essere inserito in duplice modo:

- esprimendolo in centimetri;
- esprimendolo in numero di diametri.
- Scheda Estremità. In questa scheda vanno inseriti il tipo di estremità sia destra che sinistra da selezionare da un elenco a discesa ed i valori come indicato nell'immagine di fig. 6.18.

Fig. 6.19 - Tipi di estremità per le armature longitudinali.

 Scheda Geometria. In questa sezione è possibile modificare il punto di inserimento del ferro (estremo di sinistra) attraverso le coordinate X e Y e la geometria mediante una tabella dove il ferro viene suddiviso in singoli tratti ad ogni deviazione lungo il suo sviluppo. Per ogni tratto si possono modificare la lunghezza assoluta del tratto stesso e/o le proiezioni sugli assi x e y mentre la colonna relativa all'inclinazione del tratto è solo di tipo informativo. Il tratto interessato dalla modifica viene evidenziato in rosso.

E	stremità	Geometr	ria 🚺 (Quotatura
	Coord. origine [cm]: ×353	Y 200)
Tratto	L [cm]	Dx [cm]	Dy [cm]	Angolo [*]
1	432,000	432,000	0,000	0,000000
11'				'

Fig. 6.20 - Scheda di modifica della geometria del ferro longitudinale.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del ferro nonché decidere se mostrare:
 - la scritta **Pos.** seguita da un numero identificativo;
 - la scritta inf, sup, par ad indicare la posizione del tratto (inferiore, superiore o intermedia per ferri di parete). -Solo per i moduli ScaRam e ScaGin -;
 - la lunghezza totale del ferro comprendente le lunghezze di ancoraggio e le estremità;
 - il numero dei ferri ed il diametro;
 - le quotature parziali dei singoli tratti.

Estremità	Geometria	Quotatura
🔽 Mostra la scritta P	os.x 🔲 Mostra ind	dicatore inf/sup/par
Font:	7, Arial	
Colore:		
🔽 Mostra lunghezza	totale 🔽 Mostra nu	mero ferri e diametro
Font:	9, Arial	
Colore: 💻		
🔽 Mostra quotature	parziali	
Font:	7, Arial	
Colore:		

Fig. 6.21 - Scheda di modifica delle quotature del ferro longitudinale.

6.5.7 Finestra proprietà delle staffe

La visualizzazione della finestra proprietà delle staffe si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un blocco staffe già introdotto si può procedere in due modi:

- selezionare il blocco e premere il tasto Proprietà sulla barra delle armature;

- posizionare il puntatore su un blocco staffe, premere il tasto destro del mouse e selezionare la voce di menù Proprietà.

La finestra delle proprietà consente di configurare o modificare le caratteristiche di uno o più gruppi di staffe.

- Scheda Blocchi. Ogni qualvolta si introducono uno o più gruppi di staffe si visualizza questa scheda dove risultano abilitate solo le sezioni relative ai blocchi immessi. Se invece si sta modificando un gruppo di staffe già presenti, nella scheda si visualizza una sola sezione denominata *Definizione Blocco*. Per ogni sezione sono definibili le caratteristiche del blocco.
 - Diametro Ø: diametro delle staffe del blocco.
 - Origine: ascissa, valutata rispetto al bordo sinistro della finestra principale, alla quale ha inizio il blocco.
 - Ampiezza: dimensione del blocco lungo l'asse della campata.
 - Bracci: numero di bracci delle staffe (2 o 4).
 - Passo: distanza tra due staffe nella direzione del blocco.

Armatura Staffe - Campata	1	×
Blocchi Staffa Quotatur	a	
Blocco Sinistro	Ø 8 🗸]
Origine 15 cm	Ampiezza 60	cm
Bracci 2 💌	Passo 15	cm
Blocco Centrale	Ø 8 💌]
Origine 75 cm	Ampiezza 150	cm
Bracci 2 💌	Passo 20	cm
Blocco Destro	Ø 8 💌]
Origine 225 cm	Ampiezza 60	cm
Bracci 2	Passo 15	cm
	OK Annulla	

Fig. 6.22 - Scheda Blocchi della finestra proprietà staffe.

- Scheda Staffa. In questa scheda è visibile una configurazione interattiva delle staffe ed è possibile modificare, oltre alla lunghezza di ancoraggio delle estremità, il tipo di chiusura potendo scegliere tra:
 - Chiusura a 45°: le estremità sono inclinate di 45°.
 - Chiusura a uncino: le estremità sono raccordate a forma di uncino.
 - Chiusura a cappello: la staffa è composta da due elementi distinti a forma di U che, sovrapposti, chiudono la staffa.

Fig. 6.23 - Scheda Staffe della finestra proprietà staffe.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del blocco staffe e selezionare gli elementi da mostrare:
 - Mostra la scritta Pos.x: fa vedere, in prossimità del gruppo o della staffa, la scritta Pos. seguita da un numero identificativo sia nella finestra principale che nella finestra staffe e di conseguenza nei disegni esecutivi.
 - Mostra numero staffe e diametro del blocco: fa vedere il numero di staffe presenti nel blocco ed il diametro.
 - Mostra lunghezza staffa: fa vedere la lunghezza totale della staffa comprendente le lunghezze di ancoraggio agli estremi.
 - Mostra quotature parziali staffa: fa vedere le quotature parziali dei singoli tratti della staffa.

Armatura Staffe - Campata 1	
Blocchi Staffa Quotatura	
Mostra la scritta Pos.x Font: 7, Arial Colore:	
 Mostra numero staffe e diametro del blocco Mostra lunghezza staffa Font: 8, Arial Colore:	
✓ Mostra quotature parziali staffa Font: 7, Arial Colore:	
0K Annulla	_

Fig. 6.24 - Scheda quotatura della finestra proprietà staffe.

6.5.8 Modificare senza la finestra proprietà

Alcune caratteristiche del ferro possono essere modificate senza l'ausilio della finestra proprietà.

 Punto origine: selezionare il ferro o il gruppo staffe e, tenendo premuto il tasto sinistro del mouse, trascinare la selezione nel punto voluto. In alternativa, dopo la selezione si possono utilizzare i tasti direzionali della tastiera. In entrambi i casi il movimento avviene lungo una griglia definita con la funzione SNAP e può essere vincolato dalla funzione ORTHO.

- Numero di ferri: selezionare il ferro con il mouse e, sulla barra delle armature, premere il tasto in una sola volta per aumentare il numero di ferri di una unità, invece il tasto i per ridurne il numero. Lo stesso risultato si ha premendo il tasto destro del mouse quando è posizionato sopra al ferro e scegliere Aumenta numero ferri oppure Riduce numero ferri dal menù che appare.
- Diametro: selezionare il ferro o il gruppo staffe e, sulla barra delle armature, premere il tasto per aumentare il diametro ed il tasto per diminuirlo. Anche in questo caso si può usare il tasto destro del mouse e quindi selezionare Aumenta diametro ferro/staffe oppure Riduce diametro ferro/staffe per ottenere lo stesso effetto.
- Allinea agli appoggi: per riposizionare un ferro in modo da estendere gli estremi fino agli assi degli appoggi della campata corrente, premere il tasto sulla barra delle armature oppure scegliere Allinea agli appoggi dal menu che appare premendo il tasto destro.
- Centra sull'appoggio: per riposizionare un ferro in modo da risultare centrato sull'appoggio più vicino al puntatore, premere il tasto sulla barra delle armature oppure scegliere Centra sull'appoggio dal menu che appare premendo il tasto destro.
- Allinea al copriferro: per adeguare l'altezza del blocco di staffe selezionato alla campata corrente e riposizionarlo rispettando il copriferro, premere il tasto sulla barra delle armature oppure scegliere Allinea al copriferro dal menu che appare premendo il tasto destro del mouse.
- Allinea ai pilastri: per estendere il blocco di staffe selezionato al filo dei pilastri della campata corrente, premere il tasto sulla barra delle armature oppure scegliere Allinea al filo pilastri dal menu che appare premendo il tasto destro del mouse.
- Elimina selezione: elimina il ferro o il blocco staffe selezionato se viene premuto il tasto × sulla barra delle armature oppure selezionando Elimina ferro o Elimina gruppo staffe dal menù tasto destro del mouse.
- Elimina staffe: elimina in modo permanente tutti i gruppi di staffe quando viene premuto il tasto M sulla barra delle armature.
- Elimina longitudinali: elimina in modo permanente tutti i ferri quando viene premuto il tasto ^{SSE} sulla barra delle armature.
- Elimina tutto: elimina in modo permanente tutti i ferri longitudinali e tutte le staffe quando viene premuto il tasto sulla barra delle armature.
- Modifica geometria di un ferro: con il solo uso del mouse e con l'aiuto delle funzioni SNAP e ORTHO si può modificare nel modo voluto la lunghezza di un singolo tratto del ferro. Al momento della selezione, sugli estremi di ogni singolo tratto del ferro

appaiono delle maniglie di colore grigio; facendo doppio clic su una maniglia, questa assume il colore rosso. A questo punto cliccando su una maniglia diversa da quella selezionata e trascinando il mouse col tasto sinistro premuto, l'effetto sarà quello di uno stiramento del solo tratto attiguo alla maniglia rossa e dalla parte del puntatore.

 Modifica geometria di un gruppo staffe: dopo aver impostato nel modo voluto le funzioni SNAP e ORTHO, selezionare con il mouse un blocco di staffe. Al momento della selezione, su ogni angolo del blocco appaiono delle maniglie di colore grigio; facendo doppio clic su una maniglia di un lato, entrambe le maniglie di quel lato assumono il colore rosso. A questo punto cliccando su una maniglia dell'altro lato e trascinando il mouse col tasto sinistro premuto, l'effetto sarà quello di uno stiramento del blocco ed il valore del passo del nuovo blocco sarà uguale a quello preesistente.

6.6 Esempio di calcolo di trave continua

Calcolo e verifica agli Stati Limite di una trave continua in c.a. a due campate di sezione 70x24 *cm* e 30x40 *cm*.

Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb44k.

ELABORATI GRAFICI PRODOTTI:

Fig. 6.26 - Sezione longitudinale della trave e distinta armatura.

Fig. 6.27 - Sezioni e distinta staffe.

RELAZIONE DI CALCOLO

TRAVE CONTINUA IN C.A. Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Numero di campate		2
Coeff. di omogeneizzazione		15
Copriferro	[cm]	3
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	250
Resistenza caratteristica del cls (f _{ck})	[kg/cm ²]	207,5
Resistenza di calcolo del cls ($\alpha \cdot f_{cd}$)	[kg/cm ²]	110,2
Resistenza tangenziale di calcolo ($ au_{Rd}$)	[kg/cm ²]	2,52
Resistenza a trazione per flessione (f _{cfk})	[kg/cm ²]	19,4
Tipo di acciaio		Fe B44k
Tensione caratteristica di snervamento (f _{yk})	[kg/cm ²]	4300
Resistenza di calcolo dell'acciaio (f _{yd})	[kg/cm ²]	3739,1

GEOMETRIA SEZIONI

Campata n.	Luce [cm]	B.Min [cm]	B.Mag. [cm]	H.Ala [cm]	H.Tot. [cm]	Inerzia [m4]
1	420	70	70	24	24	0,000806
2	530	30	30	40	40	0,001600

VALORI CARATTERISTICI DELLE AZIONI

CAMPATA N. 1

Carico	Valore	Valore	Distanza	Ampiezza
Distribuito	Iniziale	Finale	da Sin.	
n Tipo	[kg/m]	[kg/m]	[cm]	[cm]
1 - Fisso(G _k)	1060	1060	0	420
2 - Fisso(G _k)	1100	1100	0	420
3 - Var. (Q _{k1})	635	635	0	420

Valore	Distanza
	da Sin.
[kg]	[cm]
850	150
	Valore [kg] 850

CAMPATA N. 2

Carico	Valore	Valore	Distanza	Ampiezza
Distribuito	Iniziale	Finale	da Sin.	
n. Tipo	[kg/m]	[kg/m]	[cm]	[cm]
1 - Fisso(G _k)	300	300	0	530
2 - Fisso(G _k)	1300	1300	0	530
3 - Var. (Q _{k1})	500	1500	150	300

Coppia	Valore	Distanza
Concentrata		da Sin.
n. Tipo	[kg]	[cm]
1 - Fisso(G _k)	1200	330

VALORI DI CALCOLO DELLE AZIONI PER S.L.U.

CAMPATA N. 1

Carico	Valore	Valore	Distanza	Ampiezza
Distribuito	Iniziale	Finale	da Sin.	
n. Tipo	[kg/m]	[kg/m]	[cm]	[cm]
1 - Fisso(G _d)	1484	1484	0	420
2 - Fisso(G _d)	1540	1540	0	420
3 - Var. (Q _{d1})	953	953	0	420

Valore	Distanza
	da Sin.
[kg]	[cm]
1190	150
	Valore [kg] 1190

CAMPATA N. 2

Carico	Valore	Valore	Distanza	Ampiezza
Distribuito	Iniziale	Finale	da Sin.	
n. Tipo	[kg/m]	[kg/m]	[cm]	[cm]
1 - Fisso(G _d)	420	420	0	530
2 - Fisso(G _d)	1820	1820	0	530
3 - Var. (Q _{d1})	750	2250	150	300
Coppia	Valore	Distanza		
Concentrata		da Sin.		
n. Tipo	[kg]	[cm]		
1 - Fisso(G _d)	1680	330		

CARATTERISTICHE DELLE SOLLECITAZIONI

Sezione	Momento	Taglio
[m]	[kgm]	[kg]

Condizione di carico n. 1:

0,0	6534,6
4669,3	2359,3
4240,5	-3006,0
-1107,9	-7181,4
	0,0 4669,3 4240,5 -1107,9

4,20	-10840,4	-11356,7
campata 2		
0,00	-10840,4	10355,9
1,33	914,9	7387,9
2,65	8114,8	3226,8
3,98	7933,0	-3615,8
5,30	0,0	-7696,1
Condizione	di carico n. 2	:
C ondizione campata 1	di carico n. 2	:
C ondizione campata 1 0,00	di carico n. 2 0,0	: 7589,7
Condizione campata 1 0,00 1,05	di carico n. 2 0,0 5777,2	: 7589,7 3414,4
Condizione campata 1 0,00 1,05 2,10	di carico n. 2 0,0 5777,2 6456,3	: 7589,7 3414,4 -1950,9
Condizione campata 1 0,00 1,05 2,10 3,15	di carico n. 2 0,0 5777,2 6456,3 2215,8	: 7589,7 3414,4 -1950,9 -6126,2
Condizione campata 1 0,00 1,05 2,10 3,15 4,20	di carico n. 2 0,0 5777,2 6456,3 2215,8 -6408,8	: 7589,7 3414,4 -1950,9 -6126,2 -10301,6

С

campata 1		
0,00	0,0	7589,7
1,05	5777,2	3414,4
2,10	6456,3	-1950,9
3,15	2215,8	-6126,2
4,20	-6408,8	-10301,6
campata 2		
0,00	-6408,8	2322,2
1,33	-3700,5	1765,7
2,65	-1729,7	1209,2
3,98	-496,2	652,7
5,30	0,0	96,2

Condizione di carico n. 3:

campata 1		
0,00	0,0	1448,5
1,05	702,9	-109,7
2,10	-230,3	-1667,9
3,15	-2799,6	-3226,1
4,20	-7005,0	-4784,3
campata 2		
0,00	-7005,0	9632,2
1,33	3791,4	6664,2
2,65	10032,5	2503,1
3,98	8891,9	-4339,4
5,30	0,0	-8419,8

VERIFICA SEZIONI MAGGIORMENTE SOLLECITATE

Verifica allo S.L.U.

Momento massimo positivo (campata 2)	[kgm]	10883,5
Armatura necessaria inferiore	[cm ²]	8,7 (3ø20)

Armatura superiore Asse neutro ($x/d = 0,19 < 0,45$) Momento resistente ultimo (M_{Rd})	[cm ²] [cm] [kgm]	6,3 (2ø20) 7,1 12025,8
Momento massimo negativo (appoggio B)	[kgm]	-10840,4
Armatura necessaria superiore	[cm ²]	15,3 (5ø20)
Armatura inferiore	[cm ²]	22,0 (7ø20)
Asse neutro (x/d = 0,24 < 0,45)	[cm]	9,0
Momento resistente ultimo (M _{Rd})	[kgm]	27798,9
Taglio massimo (appoggio B)	[kg]	11356,7
Armatura staffe a 4 bracci (campata 1)	[cm²/m]	3,56 (ø8/17 cm)
Armatura ferri di parete	[cm ²]	6,8 (1+1ø22)
Resistenza a taglio del cls non armato (V _{Rd1})	[kg]	9018,1
Resistenza a taglio bielle di cls compresse (V _{Rd2})	[kg]	48613,4
Resistenza con armatura a taglio (V _{Rd3})	[kg]	58073,7

Verifica S.L.E. sez. appoggio B per comb. rara e quasi permanente

Momento massimo (comb. rara)	[kgm]	7614,4
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	53,9 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	1059,0 < 3010
Momento massimo (comb. quasi perm.)	[kgm]	6353,4
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	45,0 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	883,6 < 2150
Momento di fessurazione (comb. rara) (M _f)	[kgm]	796,4 < 7614,4
Ampiezza delle fessure (comb. rara) (W _k)	[mm]	0,04 < 0,3

Verifica S.L.E. sez. campata 2 per comb. rara e quasi permanente

Momento massimo (comb. rara)	[kgm]	7644,8
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	87,2 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	2453,3 < 3010
Momento massimo (comb. quasi perm.)	[kgm]	6378,7
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	72,7 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	2047,0 < 2150
Momento di fessurazione (comb. rara) (M _f)	[kgm]	934,7 < 7644,8
Ampiezza delle fessure (comb. rara) (W _k)	[mm]	0,10 < 0,3
Abbassamento max per comb. rara (camp.2)	[mm]	9,1
Abbassamento max per comb. quasi perm. (camp.2)	[mm]	7,7

PROSPETTO ARMATURE (con ferri dritti)

		Ferri Parete		Staffe	App.	Monconi
Camp.	Arm. inf.	sin des	Arm. sup.	sin des	۸	2420
1	4ø20		2ø20	a8/17" a8/17"	A	2020
-	1020		2020	<i>90/17 90/17</i>	R	1ø20
2	3ø20	2a22 2a22	2ø20	a8/24" a8/24"	Ъ	1020
	5020		2020	00/21 00/21	C	2ø20
Sh sin					ŭ	2020
55. 311.						
Sb. des.						

Т

Г

COMPUTO MATERIALI

Pos.	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
1	20	538	2	1076	26,54
2	20	680	2	1360	33,54
3	20	140	2	280	6,91
4	20	234	1	234	5,77
5	20	179	2	358	8,83
6	22	584	2	584	34,85
7	20	474	4	1896	46,76
8	20	584	3	1752	43,21

Lista Ferri Longitudinali

Totali Longitudinali

	Ltot [m]	Massa [kg]
Totale Ferri Ø20	69,56	171,56
Totale Ferri Ø22	5,84	34,85

Lista Staffe

Pos.	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
9	8	274,67	6	1648	6,50
10	8	274,67	12	3296	13,01
11	8	274,67	6	1648	6,50
12	8	132,00	5	660	2,60
13	8	132,00	11	1452	5,73
14	8	132,00	5	660	2,60

Totali Staffe

	Ltot [m]	Massa [kg]
Totale Staffe Ø8	93,64	36,94

Armatura (Fe B 44 k controllato)	[kg]	244
Calcestruzzo (R _{ck} =250)	[m ³]	1,34
Percentuale di armatura in peso	[%]	7,26
Incidenza peso armatura sul volume cls	[kg/m ³]	181,39

sbalzo d'angolo

Capitolo

Questo modulo consente la progettazione di sbalzi d'angolo per solai in c.a. gettati in opera. Il programma esegue il dimensionamento della trave di contrappeso, e fornisce gli esecutivi di cantiere.

7.1 Generalità

Prima di iniziare il lavoro, occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, opzioni relative ai carichi e alle tensioni ammissibili:

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.

Metodo di calcolo e verifi	ca
T.A.	S.L.
March 1995 The street	
Modalità Tensioni	
🔿 Manuale	
 Automatico 	
- Modalità Carichi	
C Manuale	
 Automatico 	

Fig. 7.1 - Scelta modalità di calcolo.

7.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 7.2 - Guida grafica di aiuto all'input dei dati.

7.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici Sbal	zo Solaio
Calcestruzzo	
Classe del calcestruzzo:	C25/30 💌
Rresistenza caratteristica cubica (Rck):	[daN/cm²] 300
Resistenza di calcolo:	[daN/cm²] 141,10
Resistenza di calcolo tangenziale:	[daN/cm²] 11.94
Resistenza di calcolo a trazione:	[daN/cm²] 30,70
Acciaio	
Tipo di acciaio:	B450C 💌
Resistenza caratteristica di snervamento:	[daN/cm²] 4500
Resistenza di calcolo:	[daN/cm²] 3913,04
Coefficiente di omogeneizzazione:	15

Fig. 7.3 - Scheda Dati Elastici.

7.2.2 Geometria Sbalzo

In questa cartella vanno inseriti i dati geometrici inerenti allo sbalzo e alle strutture adiacenti.

Dimensioni sbalzo:

- Luce: distanza misurata dall'asse della trave nei due sensi.
- Altezza: altezza totale dello sbalzo.

Dimensioni trave di bordo:

- Base sezione: valore della base.
- Altezza sezione: valore dell'altezza.

Dimensioni pilastro d'angolo:

- Base sezione: valore della base.
- Altezza sezione: valore dell'altezza.

Dati Elastici	Sbalzo	Solaio
Dimensioni sbalzo		
Luce:		[cm] 190
Altezza:		[cm] 20
-Dimensioni trave di bo	rdo	
Base sezione:		[cm] 30
Altezza sezione:		[cm] 50
Dimensioni pilastro d'a	angolo	
Base sezione:		[cm] 30
Altezza sezione:		[cm] 40

Fig. 7.4 - Scheda dati Sbalzo.

7.2.3 Geometria Solaio e Carichi

- In questa cartella vanno inseriti i dati geometrici inerenti al solaio adiacente e i carichi dello sbalzo:
- Altezza solaio: altezza complessiva del solaio adiacente.
- Spessore soletta: spessore della soletta.
- Spessore nervatura: larghezza del travetto.
- Interasse travetti: distanza in asse tra due travetti.
- Copriferro: distanza dall'asse del tondino al filo travetto.
- Fascia piena: distanza tra i laterizi e il filo della trave-appoggio.
- Carico permanente sbalzo: carico permanente agente sullo sbalzo. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio relativo alla fascia di un metro di sbalzo.
- Carico accidentale: carico accidentale agente sullo sbalzo.

Dati Elastici Sbalz	o Solaio
Dati geometrici	
Altezza solaio:	[cm] 24
Spessore soletta:	[cm] 4
Spessore nervatura:	[cm] 10
Interasse travetti:	[cm] 50
Copriferro:	[cm] 2
Fascia piena:	[cm] 10
Carichi	[automatical]
Carico strutturale permanente sbalzo:	[daN/m²] 371,3
Carico non strutturale permanente sbalzo:	[daN/m²] 0,0
Carico accidentale sbalzo:	[daN/m²] 400

Fig. 7.5 - Scheda dati Solaio.

7.3 Opzioni Sbalzo Angolo

Per accedere alle Opzioni Sbalzo d'angolo, cliccare sull'icona ^{OFZ} sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Sbalzo d'angolo o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

7.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo armatura di ripartizione. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per l'armatura di ripartizione a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Piega a squadro. Lunghezza della piega ad L.
- Piega a uncino. Prolungamento oltre il semicerchio dell'uncino nelle staffe.

Opzioni Sbalzo d'Angolo	×
Armatura Geometria Peso Proprio Quotat	ure
Diametri	Ancoraggi
[mm] 12 Ø minimo armatura principale.	[cm] 15 Piega a squadro
[mm] 6 Ø minimo armatura ripartizione.	[cm] 7 Ancoraggio staffa
[mm] 8 Ø minimo armatura a staffe.	
[cm] 7 Passo minimo delle staffe.	
Selezionare gli elementi da computare.	OK Annulla

Fig. 7.6 - Finestra opzioni, scheda Armatura.

7.3.2 Sezione Geometria

- Dimensione del cordolo estremità sbalzi. Larghezza del cordolo in prossimità degli estremi degli sbalzi.
- Dimensione profondità delle pignatte. Dimensione delle pignatte nella direzione parallela ai travetti.

Opzioni Sbalzo d'Angolo		×
Armatura Geometria Peso Proprio Quotature		
[cm] 20 Dimensione del cordolo alle estremità degli sbalzi. [cm] 25 Dimensione profondità delle pignatte.		
ОК	Annulla	

Fig. 7.7 - Finestra opzioni, scheda Geometria.

7.3.3 Sezione Peso Proprio

Se si è scelto il calcolo automatico del carico permanente, questa opzione aiuta a valutare, selezionando ciascuna voce, il contributo del peso proprio dovuto all'intonaco, al massetto ed al pavimento. Per ogni voce è necessario poi inserire lo spessore ed il peso dell'unità di volume.

Opzioni Sbalzo d'	Angolo		×
Armatura Geom	etria Peso Propri	o Quotature	
	Spessore	Peso Specifico	Peso Proprio
Intonaco:	[cm] 1,5	[daN/m²] 1500	[daN/m²] 22,5
Massetto:	[cm] 4	[daN/m²] 1400	[daN/m²] 56
Pavimento:	[cm] 2	[daN/m³] 1800	[daN/m²] 36
Tipologia del	carico: ፍ G	1-strutturale C	G2-non strutturale
Selezionare gli ele	menti da computar	e. OK	Annulla

Fig. 7.8 - Finestra opzioni, scheda Peso Proprio.

7.3.4 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Armatura Geometria Peso Proprio Quotature
Dimensioni testo
[mm] 16 Altezza del font per i titoli.
[mm] 12 Altezza del font per le indicazioni.
[mm] 10 Altezza del font per la quotatura dei ferri.
OK Annulla

Fig. 7.9 - Finestra opzioni, scheda Quotature.

7.4 Esempio di calcolo di sbalzo d'angolo

Calcolo e verifica agli Stati Limite di uno sbalzo d'angolo in c.a. di luce 190 *cm* e altezza 20 *cm*.

Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb38k.

ELABORATI GRAFICI PRODOTTI:

Fig. 7.10 - Carpenteria e armature trave di contrappeso.

Post, Pos9	1ø14	L=647	928 석 878]3
Pos2, Pos8	1014	L=685	947 셒 만97	ß
Pos3, Pos7	1014	L=723	966 쇄 	<mark>25</mark>
Pos4, Pos6	1014	L=765	987 셒 557	<mark>3</mark>
Pos5	1014	L=809	409 4 359	3

Fig. 7.11 - Distinta armatura.sbalzo.

Fig. 7.12 - Sezione trave di contrappeso.

RELAZIONE DI CALCOLO

SBALZO D'ANGOLO IN C.A. Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Luce sbalzo d'angolo	[cm]	190
Altezza sbalzo d'angolo	[cm]	20
Base trave di bordo	[cm]	30
Altezza trave di bordo	[cm]	50
Base sezione pilastro d'angolo	[cm]	30
Altezza sezione pilastro d'angolo	[cm]	40
Altezza Solaio	[cm]	24
Spessore Soletta	[cm]	4
Interasse Travetti	[cm]	50
Spessore Travetti	[cm]	10
Larghezza fascia piena	[cm]	10
Copriferro	[cm]	2
Coeff. di omogeneizzazione		15
Valore caratteristico carico permanente (g _k)	[kg/m ²]	371,3
Valore di calcolo carico permanente (g _d)	[kg/m ²]	519,8
Valore caratteristico carico variabile (qk)	[kg/m ²]	400
Valore di calcolo carico variabile (q _d)	[kg/m ²]	600
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	250
Resistenza caratteristica del cls (f _{ck})	[kg/cm ²]	207,5
Resistenza di calcolo del cls (α ·f _{cd})	[kg/cm ²]	110,2
Resistenza tangenziale di calcolo ($ au_{Rd}$)	[kg/cm ²]	2,52
Resistenza a trazione per flessione (f_{cfk})	[kg/cm ²]	19,4
Tipo di acciaio		Fe B38k
Tensione caratteristica di snervamento (f _{yk})	[kg/cm ²]	3750
Resistenza di calcolo dell'acciaio (f _{yd})	[kg/cm ²]	3260,9

SOLLECITAZIONI E ARMATURE

TRAVE DI CONTRAPPESO

Base Altezza Lunghezza Momento massimo Taglio massimo	[cm] [cm] [cm] [kgm] [kg]	45 24 244 3526,5 5781.1
Lungnezza Momente massimo	[lum]	244 2526 5
Taglio massimo		5520,5
	[Kg]	5/61,1
Armatura superiore	[cm ⁻]	5,46 (7010)
Armatura inferiore	[cm ⁻]	3010
Armatura a staffe necessaria	[cm²/m]	4,48 (ø8/12 cm)

Verifiche S.L.U.

Asse neutro (x/d = 0,17 < 0,45)	[cm]	3,8
Momento resistente ultimo (M _{Rd})	[kgm]	3659,2
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	4407,3
Resistenza del cls con armatura a taglio (V_{Rd2})	[kg]	32739,6

Resistenza sezione con armatura a taglio (V_{Rd3})[kg]30086,9

Verifiche SLE per comb. di carico rara e quasi permanente

Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	68,2 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	2238,0 < 2625
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	43,4 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	1425,5 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kgm]	805,7 < 2428,9
Ampiezza delle fessure (W _k)	[mm]	0,09 < 0,3

SBALZO D'ANGOLO

Momento massimo	[kgm]	5813,0
Taglio massimo	[kg]	11562,1
Armatura principale		9ø14
Armatura di ripartizione rete		ø10/30 cm
Asse neutro (x/d = 0,16 < 0,45)	[cm]	2,8
Momento resistente ultimo (M _{Rd})	[kgm]	7551,7
Resistenza a taglio del cls (V _{Rd1})	[kg]	12066,8

COMPUTO MATERIALI

Armatura (Fe B 38 k controllato) []	kg	74
-------------------------------------	----	----

🕮 sbalzo laterale

Questo modulo consente la progettazione di sbalzi laterali (non in prosecuzione del solaio) per solai in c.a. gettati in opera. Il programma esegue il dimensionamento dei travetti di contrappeso, e fornisce gli esecutivi di cantiere.

8.1 Generalità

Prima di iniziare il lavoro, occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, opzioni relative ai carichi e alle tensioni ammissibili:

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.

Metodo di calcolo e verifi	ca
T.A.	S.L.
– Modalità Tensioni – – – –	
C Manuale	
Chanada	
 Automatico 	
Modalita Carichi	
C Manuale	
Automatico	
L	

Fig. 8.1 - Scelta modalità di calcolo.

8.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 8.2 - Guida grafica di aiuto all'input dei dati.

8.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati elastici Sbalzo	Solaio adiacente
Calcestruzzo	
Classe del calcestruzzo:	C25/30 💌
Rresistenza caratteristica cubica (Rck):	[daN/cm²] 300
Resistenza di calcolo:	[daN/cm²] 141,10
Resistenza di calcolo tangenziale:	[daN/cm²] 11,94
Resistenza di calcolo a trazione:	[daN/cm²] 30,70
Acciaio	
Tipo di acciaio:	B450C 💌
Resistenza caratteristica di snervamento:	[daN/cm²] 4500
Resistenza di calcolo:	[daN/cm²] 3913,04
Coefficiente di omogeneizzazione:	15

Fig. 8.3 - Scheda Dati Elastici.

8.2.2 Geometria Sbalzo e Carichi

In questa cartella vanno inseriti i dati geometrici e i carichi inerenti allo sbalzo.

Dimensioni sbalzo:

- Luce: distanza misurata dall'asse della trave nei due sensi.
- Altezza: altezza totale dello sbalzo.

Carichi sbalzo:

- Carico permanente: carico permanente agente sullo sbalzo. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio relativo alla fascia di un metro di sbalzo.
- Carico accidentale: carico accidentale agente sullo sbalzo.

Dati elastici Sba	zo	L	Solaio adiace
Geometria			
Luce di calcolo:	[cm]	170	
Altezza sbalzo:	[cm]	14	
Altezza gradino:	[cm]	5	
🔲 Sbalzo tipo alleggerito			
Carichi			
Carico permanente di tipo strutturale:	[daN/m²]	496,00	Favorevole
Carico permanente non strutturale:	[daN/m²]	0,00	
Carico accidentale:	[daN/m²]	400	

Fig. 8.4 - Scheda Sbalzo.

8.2.3 Geometria Solaio

In questa cartella vanno inseriti i dati geometrici inerenti al solaio adiacente.

Dimensioni trave di bordo:

- Base trave di bordo: valore della base.
- Altezza trave di bordo: valore dell'altezza.

Dimensioni solaio:

- Altezza solaio: altezza complessiva del solaio adiacente.
- Spessore soletta: spessore della soletta.
- Spessore nervatura: larghezza del travetto.
- Interasse travetti: distanza in asse tra due travetti.
- Copriferro: distanza dall'asse del tondino al filo travetto.
- Fascia piena: distanza tra i laterizi e il filo della trave-appoggio.

Base trave di bordo:	
base three al bolab.	[500] [30
Altezza trave di bordo:	[cm] 40
Altezza solaio:	[cm] 26
Spessore soletta:	[cm] 4
Spessore nervatura:	[cm] 8
Interasse travetti:	[cm] 33
Copriferro:	[cm] 2
Fascia piena:	[cm] 20

Fig. 8.5 - Scheda Solaio adiacente.

8.3 Opzioni Sbalzo Laterale

Per accedere alle Opzioni Sbalzo Laterale, cliccare sull'icona sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Sbalzo Laterale o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

8.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo armatura di ripartizione. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per l'armatura di ripartizione a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Piega a uncino. Prolungamento oltre il semicerchio dell'uncino nei ferri piegati e nelle staffe.

Opzioni Sbalzo Laterale	×
Armatura Geometria Peso Proprio Quotat	ure
Diametri	Ancoraggi
[mm] 14 Ø minimo armatura principale.	[cm] 10 Piega estremità
[mm] 8 Ø minimo armatura ripartizione.	[cm] 7 Ancoraggio staffa
[mm] 8 Ø minimo armatura a staffe.	
[cm] 7 Passo minimo delle staffe.	
	OK Annulla

Fig. 8.6 - Finestra opzioni, scheda Armatura.

8.3.2 Sezione Geometria

- Dimensione del cordolo estremità sbalzo. Larghezza del cordolo in prossimità dell'estremo dello sbalzo.
- Dimensione profondità delle pignatte. Dimensione delle pignatte nella direzione parallela ai travetti.

Opzioni Sk	alzo Laterale ×
Armatura	Geometria Peso Proprio Quotature
[cm] [cm]	 10 Dimensione del cordolo all'estremità dello sbalzo. 25 Dimensione profondità delle pignatte.
	OK Annulla

Fig. 8.7 - Finestra opzioni, scheda Geometria.

8.3.3 Sezione Peso Proprio

Se si è scelto il calcolo automatico del carico permanente, questa opzione aiuta a valutare, selezionando ciascuna voce, il contributo del peso proprio dovuto all'intonaco, al massetto ed al pavimento. Per ogni voce è necessario poi inserire lo spessore ed il peso dell'unità di volume.

Opzioni Sbalzo La	terale		×
Armatura Geom	etria Peso Proprie	0 Quotature	
☑ Intonaco:	Spessore [cm] 2	Peso Specifico [daN/m²] 1500	Peso Proprio [daN/m²] 30
🔽 Massetto:	[cm] 5	[daN/m²] 1600	[daN/m²] 80
Pavimento:	[cm] 2	[daN/m³] 1800	[daN/m²] 36
Tipologia del carico: G1-strutturale G2-non strutturale 			
Selezionare gli ele	menti da computar	e. OK	Annulla

Fig. 8.8 - Finestra opzioni, scheda Peso Proprio.

8.3.4 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Sbalzo Laterale
Armatura Geometria Peso Proprio Quotature
Dimensioni testo
[mm] 10 Altezza del font per i titoli.
[mm] 8 Altezza del font per le indicazioni.
[mm] 6 Altezza del font per la quotatura dei ferri.
OK Annulla

Fig. 8.9 - Finestra opzioni, scheda Quotature.

8.4 Esempio di calcolo di sbalzo laterale

Calcolo e verifica agli Stati Limite di uno sbalzo laterale in c.a. di luce 170 *cm* e altezza 22 *cm*.

Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb38k.

ELABORATI GRAFICI PRODOTTI:

Fig. 8.11 - Sezione e distinta armatura.

Fig. 8.12 - Sezione travetti di contrappeso.

RELAZIONE DI CALCOLO

SBALZO LATERALE IN C.A. Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

[cm]	170
[cm]	22
[cm]	30
[cm]	40
[cm]	26
[cm]	4
[cm]	33
[cm]	8
[cm]	20
[cm]	2
	15
[kg/m ²]	356,9
[kg/m ²]	499,7
$[kg/m^2]$	500
[kg/m ²]	750
[kg/cm ²]	250
[kg/cm ²]	207,5
[kg/cm ²]	110,2
[kg/cm ²]	2,52
[kg/cm ²]	19,4
	Fe B38k
[kg/cm ²]	3750
[kg/cm ²]	3260,9
	[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

SOLLECITAZIONI E ARMATURE

TRAVETTI DI CONTRAPPESO

Base Altezza Interasse Momento Taglio Armatura inferiore Armatura superiore	[cm] [cm] [cm] [kgm] [cm ²] [cm ²] [cm ²]	25 26 150 1138,8 1877,7 0,95 (2ø10) 1,76 (3ø10) 2,86 (#8/12 cm)
Armatura a staffe necessaria	[cm ² /m]	2,86 (ø8/12 cm)

Verifiche S.L.U.

Asse neutro (x/d = 0,14 < 0,45)	[cm]	3,4
Momento resistente ultimo (M _{Rd})	[kgm]	1738,9
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	2195,2
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	19842,2
Resistenza sezione con armatura a taglio (V_{Rd3})	[kg]	20422,8

Verifiche SLE per comb. di carico rara e quasi permanente

Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	39,1 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	1520,6 < 2625
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	23,1 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	899,5 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kgm]	544,8 < 780,9
Ampiezza delle fessure (W _k)	[mm]	0,05 < 0,3

SBALZO LATERALE (per un travetto)

Momento massimo	[kgm]	596
Taglio massimo	[kg]	701
Armatura principale	[cm ²]	1,0 (3ø10)
Armatura di ripartizione		ø8/30 cm
Asse neutro (x/d = 0,36 < 0,45)	[cm]	7,2
Momento resistente ultimo (M _{Rd})	[kgm]	1332,6
Resistenza a taglio del cls (V _{Rd1})	[kg]	704,4

<u>CARICHI INDOTTI (valori di calcolo)</u>

- Sovraccarico per la trave di bordo	[kg/m]	2193,8
-Forza concentrata negativa agente nei nodi travetto solaio-travetto contrappeso (per i primi 3 travetti del solaio adiacente)	[kg]	1877,7
-Incremento armatura superiore nei primi 3 travetti del solaio adiacente pari ad 1/2 di quella inferiore (circa 1ø12 per travetto).		

COMPUTO MATERIALI

Armatura (Fe B 38 k controllato)	[kg]	24
	L81	

Capitolo

foro, ribassamento

Il modulo Foro consente di progettare la realizzazione di un foro (o del ribassamento locale) in un solaio in c.a. quando è necessario interrompere più di un travetto del solaio stesso (foro ascensore, collegamento interno tra due piani, cavedio per servizi vari, ecc.).

Il programma dimensiona, verifica le travi di bordo del foro, controlla la rigidezza della cerchiatura e prepara gli esecutivi di cantiere.

9.1 Metodo di calcolo

L'analisi e le verifiche possono essere condotte seguendo il metodo semiprobabilistico agli Stati Limite nel rispetto del D.M. 17/01/2018 e successiva circ. del 21/01/2019 oppure secondo il metodo delle Tensioni Ammissibili.

9.1.1 Schema statico

Fig. 9.1 – Tensioni trasferite dal solaio alle travi del foro.

Le travi perimetrali del foro, parallele all'orditura del solaio su cui insiste il foro, sono calcolate a flessione e a taglio e sollecitate dai carichi permanente e accidentale agenti sul solaio considerato vincolato secondo le due ipotesi limite di appoggi e incastri agli estremi.

Fig. 9.2 – Schema travi parallele all'orditura del solaio.

Le travi del foro ortogonali all'orditura, sono invece calcolate a flessione e a torsione derivanti rispettivamente dal taglio e dalla flessione trasmessi dallo schema di solaio.

Fig. 9.3 – Schema travi ortogonali all'orditura del solaio.

9.1.2 Combinazione dei carichi

Posto:

 G_1 il carico permanente strutturale (peso proprio del solaio); G_2 il carico permanente non strutturale (peso proprio del massetto, pavimento, intonaco e incidenza tramezzi); Q_{k1} il carico variabile;

 γ_{g1} il coefficiente parziale per i carichi permanenti strutturali; γ_{g2} il coefficiente parziale per i carichi permanenti non strutturali; γ_{q} il coefficiente parziale per i carichi variabili;

le combinazioni delle azioni ai fini delle verifiche agli stati limite sono:

- Combinazione fondamentale impiegata per gli stati limite ultimi (SLU)

 $q_{SLU} = \gamma_{g1} \cdot G_1 + \gamma_{g2} \cdot G_2 + \gamma_q \cdot Q_{k1}$

- Combinazione caratteristica (rara) impiegata per gli stati limite di esercizio (SLE) irreversibili:

 $q_{rara} = G_1 + G_2 + Q_{k1}$

- Combinazione frequente impiegata per gli SLE reversibili:

 $q_{\text{freq}} = G_1 + G_2 + \psi_{11} \cdot Q_{k1}$

- Combinazione quasi permanente impiegata per gli effetti a lungo termine:

 $q_{q.perm} = G_1 + G_2 + \psi_{21} \cdot Q_{k1}$

9.1.3 Controllo della rigidezza

Ai solai, oltre al compito di garantire la resistenza ai carichi verticali, è richiesta anche rigidezza nel proprio piano al fine di distribuire correttamente le azioni orizzontali tra le strutture verticali.

Il §7.2.6 delle NTC 2018 prevede, infatti, che, a condizione che le aperture presenti non ne riducano significativamente la rigidezza, i solai possono essere considerati infinitamente rigidi nel piano, purchè realizzati:

- in cemento armato (a soletta piena);

- in latero-cemento con soletta in c.a. di almeno 40 mm di spessore;

- in struttura mista con soletta in cemento armato di almeno 50 mm di spessore collegata da connettori a taglio opportunamente dimensionati agli elementi strutturali di solaio in acciaio o in legno.

La verifica della rigidezza viene eseguita utilizzando l'approccio di seguito illustrato, assumendo l'azione sismica agente alternativamente nella direzione parallela ed ortogonale all'orditura del solaio e controllando che la variazione di rigidezza del solaio prima e dopo l'intervento non risulti significativa.

Con riferimento al §7.2.3, affinchè l'intervento di apertura di un foro sul solaio possa essere considerato come elemento strutturale "secondario", la variazione di rigidezza non deve superare il 15% della analoga rigidezza degli elementi primari.

Un intervento, come un'apertura nel solaio, può essere considerato di tipo locale se riguardante singole parti e/o elementi della struttura e che interessa porzioni limitate della costruzione (NTC 2018, §8.4.3).

In questa ipotesi il progetto e la valutazione della sicurezza potranno essere riferiti alle sole parti e/o elementi interessati e documentare che, rispetto alla configurazione precedente alla variante, non siano prodotte sostanziali modifiche al comportamento delle altre parti e della struttura nel loro insieme.

Il calcolo della rigidezza può essere eseguito nel rispetto della geometria effettiva del solaio oppure ricorrendo ad una sezione uniforme di altezza equivalente costante e senza travetti. Sono disponibili tre tipologie di calcolo della rigidezza: flessionale, tagliante e assiale.

Per ogni tipologia si valuta la rigidezza prima dell'intervento (ante-operam) e dopo l'intervento (post-operam).

La verifica risulterà soddisfatta se, per ciascuna direzione principale, la variazione assoluta della rigidezza ante-operam e post-operam rapportata alla rigidezza del solaio prima dell'intervento risulti non superiore al 15%.

$$\frac{\left|\Delta K\right|}{K_{ANTE}} = \frac{\left|K_{POST} - K_{ANTE}\right|}{K_{ANTE}} \le 15\%$$

Dove:

Ls

Hs

ts E_{C}

Js

KANTE rigidezza iniziale della campata di solaio prima dell'intervento di apertura del foro; **K**_{POST} rigidezza finale del solaio dopo la realizzazione del foro.

9.1.3.1 Rigidezza Flessionale

Il calcolo della rigidezza iniziale del solaio (K_{Ante, fl}) viene eseguito assumendo uno schema di asta doppiamente incastrata con sisma laterale e valutando la rigidezza flessionale secondo la formula:

Il calcolo della rigidezza flessionale finale del solaio (K_{Post, fl}) viene eseguito assumendo lo schema in figura, suddividendo il solaio in fasce parallele all'azione e secondo la formula equivalente:

$\sqrt[3]{K_{f,foro}} = \sqrt[3]{K_{sin}} + \sqrt[3]{K_{des}} + \sqrt[3]{K_{telaio}}$

9.1.3.2 Rigidezza Tagliante

Il calcolo della rigidezza tagliante iniziale del solaio (K_{Ante, tag}) viene eseguito assumendo uno schema di asta doppiamente incastrata con sisma laterale e valutando la rigidezza flessionale secondo la formula:

$$K_{Ante,tag} = \frac{G_C t_S H_S}{\chi \cdot L_S}$$

Dove:

K _{Ante, tag}	rigidezza tagliante iniziale del solaio
Ls	dimensione solaio ortogonale al sisma
Hs	dimensione solaio parallela al sisma
ts	spessore solaio
Gc	modulo di elasticità tangenziale del calcestruzzo
х	fattore di taglio assunto pari a 1,2

Il calcolo della rigidezza tagliante finale del solaio ($K_{Post, tag}$) viene eseguito assumendo lo schema in figura, suddividendo il solaio in fasce parallele all'azione e secondo la formula equivalente:

$$\frac{1}{K_{Post,tag}} = \frac{1}{K_{f, sup}} + \frac{1}{K_{f, inf}} + \frac{1}{K_{f, foro}}$$

Con:

$$K_{f,foro} = K_{sin} + K_{des} + K_{telaio}$$

9.1.3.3 Rigidezza Assiale

Il calcolo della rigidezza assiale iniziale del solaio (*K*_{Ante, ass}) viene eseguito assumendo lo schema seguente di asta doppiamente incastrata con sisma frontale e secondo la formula:

Il calcolo della rigidezza assiale finale del solaio ($K_{Post, ass}$) viene eseguito assumendo lo schema seguente di asta doppiamente incastrata con sisma frontale e secondo la formula:

$$K_{Post,ass} = K_{f,sup} + K_{f,inf} + K_{f,foro}$$

Con:

 $\frac{1}{K_{f,foro}} = \frac{1}{K_{\text{sin}}} + \frac{1}{K_{des}} + \frac{1}{K_{telaio}}$

9.2 Interfaccia

9.2.1 Modalità di calcolo

Prima di iniziare il lavoro, occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo sono visibili, sulla destra dello schermo, le opzioni relative alla immissione dei carichi, alle caratteristiche dei materiali e al metodo di verifica.

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore desiderato.

Metodo di calcolo e verifica		
T.A.	S.L.	
– Modalità Tensioni – – –		
C Manuale		
 Automatico 		
- Modelità Cariobi		
Modalita Calichi		
 Manuale 		
C Automatico		

Fig. 9.4 - Scelta modalità di calcolo.

9.2.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

L'inserimento dei vari dati è suddiviso su tre schede: Dati elastici, dati relativi al foro, dati relativi al solaio.

Fig. 9.5 - Guida grafica di aiuto all'input dei dati.

9.2.3 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.
- Copriferro: distanza dall'asse del tondino al filo travetto.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici Foro	Solaio
Calcestruzzo	
Classe del calcestruzzo:	C25/30 💌
Rresistenza caratteristica cubica (Rck):	[daN/cm ²] 300
Resistenza di calcolo:	[daN/cm²] 141,1
Resistenza di calcolo tangenziale:	[daN/cm²] 2.98
Resistenza di calcolo a trazione:	[daN/cm²] 11,94
Acciaio	
Tipo di acciaio:	B450C 💌
Resistenza caratteristica di snervamento:	[daN/cm²] 4500
Resistenza di calcolo:	[daN/cm²] 3913
Coefficiente di omogeneizzazione:	15

Fig. 9.6 - Scheda Dati Elastici.

9.2.4 Geometria del Foro

In questa scheda vanno inseriti i dati geometrici inerenti al foro.

Dati Elastici	Foro	Solaio
Dimensioni Luce in direzione orditura (X): Luce in direzione ortogonale (Y):	[cm] 150 Dist.X verti [cm] 190 Dist.Y verti	ce: [cm] 80 ce: [cm] 70
Posizione Distanza dal filo interno trave sir Distanza dal filo interno trave inf	nistra: [cm] 160 (C.a. in c ieriore: [cm] 130 (C.a. con	classe
✓ Larghezza fissa travi cerchial Trave Sup.: Sup.: B [cm] 50 Trave Sin.: Trave B [cm] 50 Inf.: B [cm] 50	B [cm] 30 Copri-prof B [cm] 30 Copri-prof	iilati // X [cm] C 1 filati // Y [cm] 1 C 1
Rigidezza cerchiatura del foro ✓ Margine di variazione Image: Approssimazione decimali: 0	✓ Rigidezza Flession ✓ Rigidezza Tagliant ✓ Rigidezza Assiale ✓ Mostra andamento della rig	ale e Calcolo effettivo (solaio più travetti) C Calcolo approssimato (solaio equivalente)

Fig. 9.7 - Scheda Foro.

Tipologia foro:

Sono disponibili 5 diverse tipologie geometriche dell'apertura selezionabili da un elenco grafico.

- Foro di forma rettangolare.
- Foro di forma a L con 4 diversi orientamenti individuabili attraverso le coordinate del vertice di riferimento.

Dimensione foro:

- Luce direzione orditura solaio (X): massima estensione della luce nella direzione dell'orditura del solaio (asse X).
- Luce direzione ortogonale (Y): massima estensione della luce nella direzione ortogonale all'orditura del solaio (asse Y).
- Nel caso di foro a L vengono richieste le coordinate del vertice di riferimento rispetto al vertice inferiore sinistro del rettangolo che inscrive la sagoma del foro.

Posizione foro:

- Distanza filo interno da trave sinistra: distanza del foro dal filo della trave sinistra.
- Distanza filo interno da trave inferiore: distanza del foro dal filo della trave inferiore.

Larghezza fissa travi della cerchiatura:

Selezionando questo riquadro si permette all'elaborazione di mantenere fisse le dimensioni delle larghezze delle travi che formano la cerchiatura del foro. Questa opzione può tornare utile dopo una prima fase dove invece si lascia il compito del dimensionamento e verifica al programma. Partendo poi dalle dimensioni così ottenute si possono ottimizzare tali larghezze utilizzando uno step differente da quello usato automaticamente (5 cm).

Materiale cerchiatura:

Per realizzare la cerchiatura del foro adesso è possibile scegliere il tipo di materiale tra calcestruzzo armato e profili in acciaio.

- **c.a. in opera**. Il calcolo viene eseguito adottando travi in c.a.. Operando questa selezione gli altri campi dati presenti nel riquadro vengono inibiti.
- Acciaio classe. Il calcolo viene eseguito adottando profili in acciaio della classe selezionabile dal menù a tendina che adesso risulta attivo. In questa circostanza andranno operate ulteriori scelte.

- **Profilo**. Selezionando questa opzione il programma esegui i calcoli adottando il tipo di profilo indicato nel relativo menù a tendina. Viceversa il programma esegui i calcoli scegliendo opportunamente il tipo di profilo minimo adeguato per ogni singolo lato della cerchiatura.
- **Copri-profilati** // **X**. Margine di calcestruzzo che si vuole mantenere ai fianchi dei profili paralleli all'asse X.
- **Copri-profilati** // **Y**. Margine di calcestruzzo che si vuole mantenere ai fianchi dei profili paralleli all'asse Y.

Nota: Qualora un lato del foro si trovi ad una distanza dalla trave di bordo del solaio inferiore a quella necessaria per alloggiare il profilo con i suoi margini laterali ma almeno pari alla larghezza del profilo stesso, il programma inserirà il profilo disattendendo i margini assegnati.

Rigidezza del solaio:

Questo riquadro consente di settare le varie impostazioni per verificare che la rigidezza del solaio post-operam non si discosti da un valore predefinito percentualmente rispetto alla rigidezza ante-operam.

- Selezionando Margine di variazione, il valore assegnato (normalmente 15%) viene assunto come limite di controllo segnalando ed evidenziando in rosso i valori riscontrati oltre questo limite. E' inoltre possibile individuare quanti decimali utilizzare nella valutazione. Nel caso in cui la selezione viene omessa il calcolo viene eseguito ma senza alcun controllo e segnalazione.
- Il programma può eseguire tre diverse tipologie di rigidezza separatamente: Flessionale, Tagliante e Assiale selezionandone almeno un tipo.
- Infine si può scegliere di eseguire i calcoli sia mantenendo la forma reale dei travetti sia adottando un'approssimazione sulla forma del solaio individuando una sezione rettangolare di altezza equivalente.
- **Mostra andamento della rigidezza**. Attivando questa utilità, durante l'elaborazione vengono visualizzati in un riquadro a destra tutti i valori correnti delle rigidezze e contemporaneamente si disattivano i messaggi di Alert quando una verifica non è soddisfatta.

9.2.5 Geometria Solaio e Carichi

In questa cartella vanno inseriti i dati geometrici e i carichi inerenti al solaio.

Dimensioni travi perimetrali del solaio:

- **Trave lato sinistro**: Base e Altezza.
- **Trave lato destro**: Base e Altezza.
- **Trave lato superiore**: Base e Altezza.
- **Trave lato inferiore**: Base e Altezza.

Dimensioni solaio:

- Luce netta in direzione (X): luce solaio nella direzione dell'orditura (asse X).
- Luce netta in direzione (Y): luce solaio nella direzione ortogonale (asse Y).
- Altezza solaio: altezza complessiva del solaio adiacente.
- Spessore soletta: spessore della soletta.
- Spessore nervatura: larghezza del travetto.
- Interasse travetti: distanza in asse tra due travetti.
- **Fascia piena**: distanza, lungo la direzione dei travetti, tra i laterizi e il filo della trave-appoggio del solaio.
- **Distanza prima fascia di laterizi**: distanza, in direzione ortogonale ai travetti, tra la prima fila di laterizi e il filo della trave laterale del solaio. La conoscenza e l'inserimento di questo dato può aiutare a scegliere in modo ottimale la posizione del foro evitando interruzioni solo parziali di qualche travetto.
- **Copriferro**: distanza intesa tra il bordo del calcestruzzo ed il baricentro dell'armatura.

Opzione nervatura:

• **Solaio a doppia nervatura**: selezionando questa voce viene aggiunta una nervatura secondaria trasversale a quella principale e con uguali caratteristiche.

Carichi agenti sul solaio:

- **Carico permanente strutturale**: carico permanente strutturale agente sul solaio. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio relativo alla fascia di un metro di solaio sulla base delle impostazioni (Opzioni Foro).
- **Carico permanente non strutturale**: carico permanente non strutturale agente sul solaio. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio relativo alla fascia di un metro di solaio sulla base delle impostazioni (Opzioni Foro) richiamabili anche attraverso il tastino alla destra del campo dati.
- **Carico accidentale**: sovraccarico accidentale.

Manuale d'uso

Dati Elastici	Ť.	Foro		Solaio	
Geometria del solaio Luce netta in direzione X:	[cm] 450		Travi perimetrali del sol	aio Base [cm]	Altezza [cm]
Luce netta in direzione Y: Altezza solaio:	[cm] 510 [cm] 28		Trave lato destro:	30	50
Spessore soletta: Spessore Nervatura:	[cm] 4 [cm] 12		Trave lato superiore:	30	50
Fascia piena: [cm] 62 Distanza prima fascia laterizi: [cm] 10			Opzione nervatura	30	50
Copriferro: Carichi agenti sul solaio	[cm] 2,5		🔲 Solaio a doppia nerv	vatura	
Carico permanente strutturale: [daN/m²] 312,9					
Carico permanente non str Carico accidentale:	utturale:	[daN/i [daN/i	m²] 86 m²] 170		

Fig. 9.8 - Scheda Solaio.

9.3 Opzioni Foro

Per accedere alle Opzioni Foro, cliccare sull'icona sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni → Foro o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

9.3.1 Sezione Armatura

- **Diametro (Ø) minimo armatura principale**. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- **Diametro (Ø) minimo ferri di parete**. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per eventuali ferri di parete a partire da quello indicato.
- **Diametro (Ø) minimo armatura a staffe**. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- **Passo minimo delle staffe**. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- **Piega estremità**. Prolungamento oltre il punto di lavoro nei ferri longitudinali.
- Ancoraggio staffa. Prolungamento dell'estremità oltre il semicerchio dell'uncino nelle staffe.
- **Percentuale di acciaio in volume di cls**. Percentuale di riferimento utilizzata nella valutazione dell'altezza equivalente del solaio nel calcolo approssimato della rigidezza.

 Incidenza. Peso del ferro desunto dal valore percentuale di acciaio in volume di cls e attribuendo una densità del ferro di 8750 kg/m³.

Opzioni Foro	×
Armatura Geometria Peso Proprio Quota	iture
Diametri	Ancoraggi
[mm] 14 Ø minimo armatura principale.	[cm] 10 Piega estremità
[mm] 10 Ø minimo armatura di parete.	[cm] 7 Ancoraggio staffa
[mm] 8 Ø minimo armatura a staffe.	Percentuale di acciaio
[cm] 7 Passo minimo delle staffe.	in volume di cls: [1,5 [%]
	Incidenza: [Kg/mc] 118

Fig. 9.9 - Finestra opzioni, scheda Armatura.

9.3.2 Sezione Geometria

• Dimensione profondità dei blocchi di alleggerimento. Dimensione dei blocchi nella direzione parallela all'orditura del solaio.

Opzioni F	ro	×
Armatura	Geometria Peso Proprio Quotature	
[cm]	25 Dimensione profondità dei blocchi di alleggerimento.	
	OKAnnulla	

Fig. 9.10 - Finestra opzioni, scheda Geometria.

9.3.3 Sezione Peso Proprio

- Se si è scelto il calcolo automatico del carico permanente, questa opzione aiuta a valutare, selezionando ciascuna voce, il contributo del peso proprio dovuto all'Intonaco, al Massetto ed al Pavimento. Per ogni voce è necessario poi inserire lo spessore ed il peso dell'unità di volume. L'ultimo campo, non editabile, indica il valore del peso proprio come risultato dei dati immessi nei campi che lo precedono.
- **Tipologia del carico**. Selezionare **G1-strutturale** oppure **G2-non strutturale** per indicare se quel carico permanente è da considerarsi strutturale o non-strutturale.
- **Incidenza Tramezzi**. Spuntando questa voce si abilita l'inserimento di un sovraccarico (G2non strutturale) forfettario dovuto alla presenza dei tramezzi altrimenti non computabili.

Opzioni Foro		×	
Armatura Geometria Peso Propri	io Quotature		
Spessore ✓ Intonaco: [cm] 1.5 ✓ Massetto: [cm] 5	Peso Specifico [daN/m²] 1600 [daN/m²] 1800	Peso Proprio [daN/m²] 24 [daN/m²] 90	
✓ Pavimento: [cm] 2 Tipologia del carico: C G	[daN/m ³] 2000 1-strutturale (•	[daN/m²] 40 G2-non strutturale	
✓ Incidenza Tramezzi (G2): [daN/m²] 100			
Selezionare gli elementi da computare. OK Annulla			

Fig. 9.11 - Finestra opzioni, scheda Peso Proprio.

9.3.4 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Foro	×
Armatura Geometria Peso Proprio Quotature	
Dimensioni testo	
[mm] 14 Altezza del font per i titoli.	
[mm] 10 Altezza del font per le indicazioni.	
[mm] 8 Altezza del font per la quotatura dei ferri.	
OK An	nulla

Fig. 9.12 - Finestra opzioni, scheda Quotature.

9.4 Finestra Armature

Alla finestra delle armature si accede automaticamente dopo aver premuto il tasto **Elabora Elaborazione Dati** sulla barra degli strumenti alla fine dell'inserimento dei dati. Se questa fase è stata già eseguita una volta, l'accesso può essere ottenuto anche premendo il tasto **Mostra Armatura** quando risulta attivo.

Fig. 9.13 - Finestra Armature foro in c.a..

Fig. 9.14 - Finestra Armature foro con profilati in acciaio.

All'interno di questa finestra sono presenti una barra degli strumenti dedicata alla gestione delle armature e una serie di viste interconnesse che permettono di gestire e monitorare i vari aspetti inerenti alle armature.

In questa finestra le armature proposte dal programma possono essere accettate come sono oppure possono essere modificate come descritto nel seguito. Definite le armature, è possibile salvarle utilizzando la secondo tasto sulla barra degli strumenti dedicata a questa finestra **Salva armatura corrente**. Questa operazione può tornare utile se si dovesse ripetere l'elaborazione sin dall'inizio, ma rivuole lasciare la precedente personalizzazione delle armature. In questo caso bisogna richiamare lo schema di armature salvate utilizzando la primo tasto sulla barra degli strumenti dedicata **Carica armatura ultimo salvataggio**.

Sulla barra degli strumenti dedicata è presente la funzionalità **SNAP** Snap 1 che permette, se attivato, spostamenti del mouse su una griglia con passo indicato a fianco.

Sulla barra di stato, nella parte bassa dello schermo, sono presenti un campo che indica lo stato attuale dello **SNAP** (ON/OFF) ed un campo che indica lo stato attuale della funzione **ORTHO** (ON/OFF) che

permette solo spostamenti ortogonali tra loro. Lo stato di queste funzioni può essere cambiato facendo un doppio click sul campo medesimo.

Per passare alla fase successiva e poter visionare gli elaborati definitivi: Relazione ed Esecutivi, è necessario completare l'elaborazione premendo il tasto 🏶 **Aggiorna calcoli** sulla barra degli strumenti dedicata.

9.4.1 Vista Pianta Foro

Mostra la pianta del solaio interessato all'apertura, la posizione dei singoli travetti, la posizione del foro, l'ingombro della cerchiatura con all'interno la disposizione attuale delle armature.

9.4.2 Vista Sezione Trave

Viene mostrata in modo dinamico la sezione, comprese le armature, della trave corrente ovvero della trave sulla quale è posizionato il puntatore del mouse.

9.4.3 Vista Staffe

Viene mostrata il dettaglio della singola staffa (solo nel caso di cerchiatura in c.a.).

9.4.4 Vista Armatura Foro Trave Superiore

Armature longitudinali (solo per cerchiatura in c.a.)

In questa finestra è visibile la sezione longitudinale della trave superiore del foro. Al di sotto è disposta la distinta delle armature longitudinali. Ogni singola armatura può essere modificata. Dopo aver selezionato con un click una delle armature, contestualmente viene messa in evidenza in rosso nella vista **Pianta** e nella vista **Sezione**. Per modificare l'armatura selezionata premere uno dei tasti attivi sulla barra degli strumenti dedicata.

Allinea gli estremi: estende le estremità del ferro selezionato fino agli assi degli appoggi della campata.

Aumenta diametro: aumenta il diametro del ferro selezionato.

Riduci diametro: riduce il diametro del ferro selezionato.

Elimina selezione: elimina il ferro selezionato.

Duplica ferro selezionato: esegue una copia del ferro selezionato.

Le stesse modifiche già viste possono essere operate attraverso il menù a comparsa proposto facendo click destro sul mouse.

Allinea gli es	tremi
Aumenta dia	emetro ferro
Riduci diame	etro ferro
limina ferro	ê
Duplica ferro	,
Annulla	

Fig. 9.15 – Menù modifica armature longitudinali.

Armature a staffa (solo per cerchiatura in c.a.)

Nella sezione longitudinale della trave superiore del foro è disposta l'armatura a staffe in un blocco selezionabile. Per modificare le staffe, selezionare con un click il blocco, contestualmente viene messo in evidenza in rosso nella vista **Pianta**. Le caratteristiche del blocco staffe selezionato sono modificabili attraverso i tasti attivi sulla barra degli strumenti dedicata:

Allinea al copriferro: adegua l'altezza del blocco di staffe selezionato alla campata corrente e lo riposiziona rispettando il copriferro.

Allinea gli estremi: estende le estremità del del blocco selezionato fino agli assi degli appoggi della campata.

Aumenta diametro: aumenta il diametro delle staffe del blocco selezionato.

Riduci diametro: riduce il diametro delle staffe del blocco selezionato.

Aumenta passo staffe: aumenta il passo del blocco di staffe selezionato.

Riduci passo staffe: riduce il passo del blocco di staffe selezionato.

Le stesse modifiche già viste possono essere operate attraverso il menù a comparsa proposto facendo click destro sul mouse.

Fig. 9.16 – Menù modifica armature a staffa.

Armatura con profilati (solo per cerchiatura in acciaio)

La vista si presenta con la sezione longitudinale della trave con all'interno il profilato. Selezionato con un click il profilato, ai suoi angoli si formano 4 maniglie rosse che rendono visibile la selezione. Per modificare il profilato selezionato fare click destro sul mouse e dal menù selezionare **Modifica profilo**.

Modifica profilo
Annulla

Fig. 9.17 – Menù modifica profilo in acciaio.

9.4.5 Vista Armatura Foro Trave Sinistra

In questa finestra è visibile la sezione longitudinale della trave sinistra del foro con l'armatura a staffe. Al di sotto è disposta la distinta delle armature longitudinali.

L'operatività di questa finestra risulta identica a quella descritta al punto 9.5.4.

9.4.6 Vista Armatura Foro Trave Inferiore

In questa finestra è visibile la sezione longitudinale della trave inferiore del foro con l'armatura a staffe. Al di sotto è disposta la distinta delle armature longitudinali.

L'operatività di questa finestra risulta identica a quella descritta al punto 9.5.4.

9.4.7 Vista Armatura Foro Trave Destra

In questa finestra è visibile la sezione longitudinale della trave destra del foro con l'armatura a staffe. Al di sotto è disposta la distinta delle armature longitudinali.

L'operatività di questa finestra risulta identica a quella descritta al punto 9.5.4.

9.5 Vista Relazione

Alla vista della relazione si può accedere dopo aver premuto il tasto 🏶 Aggiorna calcoli sulla barra degli strumenti dedicata. L'accesso si ottiene premendo il tasto 🗵 Mostra Relazione quando risulta attivo.

Committente: <committente> Progettista: <itecnico> Codice di calcolo: Software Elest v. 6.5.5 (http://www.elest.com) Licenza d'uso n.: <licenzan> Concessa a: <itecnico> Posizione file: C:\Elest\Lavori\Senza Nome</itecnico></licenzan></itecnico></committente>
RELAZIONE DI CALCOLO
FORO SOLAIO
Elaborazioni eseguite secondo le norme italiane (D.M. 17/01/2018) col metodo semiprobabilistico agli Stat Limite.
Schema statico:
Le travi del foro (T2 e T4), parallele all'orditura del solaio su cui insiste il foro, sono calcolate a flessione a taglio e sollecitate dai carichi permanente e accidentale agenti sul solaio considerato vincolato secondo le due ipotesi limite di appoggi e incastri agli estremi. Le travi del foro (T1 e T3), ortogonali all'orditura, sono invece calcolate a flessione e a torsione derivanti rispettivamente dal taglio e dalla flessione trasmessi dallo schema di solaio.
Diagrammi costitutivi dei materiali:
Calcestruzzo: • modulo di elasticità $E_c = 314472 [daN/cm^2]$

Fig. 9.18 – Vista Relazione.

9.6 Vista Esecutivi

Alla vista degli esecutivi si può accedere dopo aver premuto il tasto 🏶 Aggiorna calcoli sulla barra degli strumenti dedicata. L'accesso si ottiene premendo il tasto 🎽 Mostra Esecutivi quando risulta attivo.

Fig. 9.19 – Vista Esecutivi cerchiatura in c.a..

Fig. 9.20 – Vista Esecutivi cerchiatura in profili di acciaio.

All'apertura della finestra **Esecutivi** sulla barra degli strumenti risultano attivi i tasti di visualizzazione ed un tasto per la creazione del file dxf.

Genera file DXF: consente di creare un file con estensione dxf gestibile con un qualsiasi CAD. Al termine della creazione un messaggio comunica la posizione sul disco dove il file è stato salvato (C:\Elest\Lavori\Doc\NomeFile.dxf).

- **Pan**: consente di muovere l'immagine in qualsiasi direzione.
- **Zoom Più**: ingrandisce la vista corrente del 50%.
- **Zoom Meno**: riduce l'ingrandimento della vista corrente del 50%.
- **Zoom Finestra**: ingrandisce la zona del disegno individuata attraverso il puntatore del mouse.
- **Soom Precedente**: mette a video l'immagine precedente l'ultima.
- **Soom Estensioni**: mette a video l'immagine entro i limiti del disegno.

9.7 Vista Diagrammi

Alla vista dei diagrammi si può accedere già dopo la prima fase di elaborazione premendo il tasto Elabora Elabora Dati sulla barra degli strumenti. L'accesso si ottiene premendo il tasto Mostra Diagrammi quando risulta attivo.

Fig. 9.21 – Vista Diagrammi.

Nella finestra **Diagrammi** sono visibili gli schemi di carico del solaio con i relativi diagrammi del momento e del taglio; le singole travi della cerchiatura del foro con i relativi diagrammi.

9.8 Esempio di calcolo di un foro

Calcolo e verifica agli Stati Limite di un foro di luce 140 x 120 *cm* su di un solaio di dimensioni 480 x 500 *cm* (Esempio.for).

Sono utilizzati calcestruzzo di classe C25/30 e barre del tipo B450C.

RELAZIONE DI CALCOLO

FORO SOLAIO

Elaborazioni eseguite secondo le norme italiane (D.M. 17/01/2018) col metodo semiprobabilistico agli Stati Limite.

Schema statico:

Le travi del foro (T2 e T4), parallele all'orditura del solaio su cui insiste il foro, sono calcolate a flessione e a taglio e sollecitate dai carichi permanente e accidentale agenti sul solaio considerato vincolato secondo le due ipotesi limite di appoggi e incastri agli estremi. Le travi del foro (T1 e T3), ortogonali all'orditura, sono invece calcolate a flessione e a torsione derivanti rispettivamente dal taglio e dalla flessione trasmessi dallo schema di solaio.

Diagrammi costitutivi dei materiali:

Calcestruzzo:

- diagramma $\sigma\text{-}\epsilon$ parabola-rettangolo
- fattore per carichi di lunga durata α = 0,85
- fattore di sicurezza del materiale γ_{C} = 1,50
- allungamenti specifici: ϵ_{c2} = 0,2%; ϵ_{cu} = 0,35%

Acciaio:

- diagramma $\sigma\text{-}\epsilon$ elastico-perfettamente plastico
- fattore di sicurezza del materiale γ_{S} = 1,15
- allungamenti specifici: ϵ_{yd} = 0,186%; ϵ_{ud} = 1,00%

Pianta solaio con foro

1. DATI GEOMETRICI ED ELASTICI

Geometria Solaio:		
Trave Superiore	[cm]	35x26
Trave Inferiore	[cm]	40x26
Trave Sinistra	[cm]	40x26
Trave Destra	[cm]	32x26
Luce di calcolo Solaio in direzione orditura (X)	[cm]	510
Luce di calcolo Solaio in direzione ortogonale (Y)	[cm]	560
Altezza Solaio	[cm]	26
Spessore Soletta	[cm]	4
Interasse Travetti	[cm]	50
Spessore Travetti	[cm]	10
Copriferro	[cm]	3
Coeff. di omogeneizzazione		15
Geometria Foro:		
Dimensioni	[cm]	140x120
Trave Superiore	[cm]	35x26

Trave Inferiore Trave Sinistra Trave Destra	[cm] [cm] [cm]	40x26 40x26 35x26
Posizione angolo inf-sin del rettangolo for Distanza X da filo interno trave inferiore solaio Distanza Y da filo interno trave sinistra solaio	• o [cm] [cm]	40 150
Carichi: Valore caratteristico fisso strutturale (G_1) Valore caratteristico fisso non strutturale (G_2) Valore caratteristico variabile (Q_{k1})	[daN/m ²] [daN/m ²] [daN/m ²]	315,6 210 200
Valore di calcolo fisso strutturale ($\gamma_{G1} \cdot G_1$) Valore di calcolo fisso non strutturale ($\gamma_{G2} \cdot G_2$) Valore di calcolo variabile ($\gamma_{Q1} \cdot Q_{k1}$)	[daN/m²] [daN/m²] [daN/m²]	410,3 315 300
Materiali: Classe del calcestruzzo Rresistenza caratteristica cubica (R_{ck}) Resistenza caratteristica cilindrica (f_{ck}) Resistenza di calcolo del cls (f_{cd}) Resistenza tangenziale di calcolo (τ_{Rd}) Resistenza a trazione per flessione (f_{cfk})	[daN/cm ²] [daN/cm ²] [daN/cm ²] [daN/cm ²] [daN/cm ²]	C25/30 300 249 141,1 2,98 30,7
Tipo di acciaio Tensione caratteristica di snervamento (f _{yk}) Resistenza di calcolo dell'acciaio (f _{yd})	[daN/cm ²] [daN/cm ²]	B450C 4500 3913

2. SOLLECITAZIONI E ARMATURE

Trave A-B: Diagrammi M, T

Sezione (b x h)	[cm]	35 x 26
Momento massimo positivo	[daNm]	2865,5
Momento massimo negativo	[daNm]	-970,3
Taglio massimo	[daN]	1866,0
Armatura longitudinale inferiore	[cm ²]	3,7 (4ø12)
Armatura longitudinale superiore	[cm ²]	1,3 (3ø12)

Armatura staffe a 2 bracci	$[cm^2/m]$	1,2 (ø8/14 cm)
Verifiche SLU:		
Asse neutro (x/d = 0,18 < 0,45)	[cm]	4,0
Momento resistente ultimo (M _{Rd})	[daNm]	3737,7
Resistenza a taglio del solo cls (V_{Rd})	[daN]	44985,2
Resistenza del cls con armatura a taglio (V _{Rsd})	[daN]	6664,3
Resistenza sezione con armatura a taglio (V_{Rcd})	[daN]	25556,7
Verifica stato limite di limitazione delle tensioni		
Tensione nel cls (comb. rara) (σ_c)	[daN/cm ²]	64,6 < 149,4
Tensione nel ferro (comb. rara) (σ_s)	[daN/cm ²]	2184,5 < 3600
Tensione nel cls (comb. quasi perm.) (σ_c)	[daN/cm ²]	52,1 < 112,1
Tensione nel ferro (comb. quasi perm.) (σ_s)	[daN/cm ²]	1763,0 < 3600
Verifiche SLE - Fessurazione		
Momento di fessurazione (comb. q.perm.) (M_f)	[daNm]	958,8 < 1636,7
Ampiezza delle fessure (comb. q.perm.) (W _m)	[mm]	0,14 < 0,3
Momento di fessurazione (comb. freq.) (M _f)	[daNm]	958,8 < 1748,5
Ampiezza delle fessure (comb. freq.) (W _m)	[mm]	0,15 < 0,4

TRAVE INFERIORE

Sezione (b x h)	[cm]	40 x 26
Momento massimo positivo	[daNm]	3274,8
Momento massimo negativo	[daNm]	-1108,9
Taglio massimo	[daN]	2132,6
Armatura longitudinale inferiore	[cm ²]	4,2 (4ø12)
Armatura longitudinale superiore	[cm ²]	1,5 (3ø12)
Armatura staffe a 2 bracci	[cm ² /m]	1,3 (ø8/14 cm)

Verifiche SLU:		
Asse neutro (x/d = 0,15 < 0,45)	[cm]	3,9
Momento resistente ultimo (M _{Rd})	[daNm]	3767,4
Resistenza a taglio del solo cls (V _{Rd})	[daN]	49173,5
Resistenza del cls con armatura a taglio (V_{Rsd})	[daN]	7616,4
Resistenza sezione con armatura a taglio (V_{Rcd})	[daN]	29207,7
Verifica stato limite di limitazione delle tensioni		
Tensione nel cls (comb. rara) (σ_c)	[daN/cm ²]	68,8 < 149,4
Tensione nel ferro (comb. rara) (σ_s)	[daN/cm ²]	2484,6 < 3600
Tensione nel cls (comb. quasi perm.) (σ_c)	[daN/cm ²]	55,5 < 112,1
Tensione nel ferro (comb. quasi perm.) (σ_s)	[daN/cm ²]	2005,2 < 3600
Verifiche SLE - Fessurazione		
Momento di fessurazione (comb. q.perm.) (M_f)	[daNm]	1132,0 < 1870,5
Ampiezza delle fessure (comb. q.perm.) (W_m)	[mm]	0,17 < 0,3
Momento di fessurazione (comb. freq.) (M _f)	[daNm]	1132,0 < 1998,2
Ampiezza delle fessure (comb. freq.) (W_m)	[mm]	0,19 < 0,4

TRAVE SINISTRA

Verifiche SLU:		
Asse neutro (x/d = 0,13 < 0,45)	[cm]	2,9
Momento resistente ultimo (M _{Rd})	[daNm]	1943,7
$(M_t / T_{Rcd}) + (T / V_{Rcd})$		0,28 < 1
Resistenza a taglio del solo cls (V_{Rd})	[daN]	43165,5
Resistenza del cls con armatura a taglio (V_{Rsd})	[daN]	11238,8
Resistenza sezione con armatura a taglio (V _{Rcd})	[daN]	29207,7
Resistenza a torsione bielle compresse (T _{Rcd})	[daNm]	3368,6
Resistenza a torsione armatura staffe (T_{Rsd})	[daNm]	2698,5
Resistenza a torsione arm. longitudinale (T_{Rld})	[daNm]	2381,4
Verifica stato limite di limitazione delle tensioni		
Tensione nel cls (comb. rara) (σ_c)	[daN/cm ²]	17,6 < 149,4
Tensione nel ferro (comb. rara) (σ_s)	[daN/cm ²]	942,9 < 3600
Tensione nel cls (comb. quasi perm.) (σ_c)	[daN/cm ²]	14,2 < 112,1
Tensione nel ferro (comb. quasi perm.) (σ_s)	[daN/cm ²]	761,0 < 3600
Verifiche SLE - Fessurazione		
Momento di fessurazione (comb. q.perm.) (M_f)	[daNm]	1272,1 > 363,2
Trave non fessurata.		
Momento di fessurazione (comb. freq.) (M_f)	[daNm]	1272,1 > 388,0
Trave non fessurata.		

TRAVE DESTRA

Sezione (b x h)	[cm]	35 x 26
Momento massimo positivo	[daNm]	190,8
Momento massimo negativo	[daNm]	-73,8
Taglio massimo	[daN]	484,4

Momento torcente	[daNm]	1889,3
Armatura longitudinale inferiore Armatura longitudinale superiore	[cm ²]	1,9 (3ø12) 1,7 (3ø12)
Armatura staffe a 2 bracci	$[cm^2/m]$	3,0 (ø8/11 cm)
Verifiche SLU:		
Asse neutro (x/d = 0,14 < 0,45)	[cm]	3,6
Momento resistente ultimo (M _{Rd})	[daNm]	2842,1
$(M_t / T_{Rcd}) + (T / V_{Rcd})$		0,69 < 1
Resistenza a taglio del solo cls (V _{Rd})	[daN]	40871,8
Resistenza del cls con armatura a taglio (V_{Rsd})	[daN]	21737,1
Resistenza sezione con armatura a taglio (V_{Rcd})	[daN]	25556,7
Resistenza a torsione bielle compresse (T_{Rcd})	[daNm]	2822
Resistenza a torsione armatura staffe (T_{Rsd})	[daNm]	4380,8
Resistenza a torsione arm. longitudinale (T_{Rld})	[daNm]	2590,6
Verifica stato limite di limitazione delle tensioni		
Tensione nel cls (comb. rara) (σ_c)	[daN/cm ²]	4,8 < 149,4
Tensione nel ferro (comb. rara) (σ_s)	[daN/cm ²]	191,9 < 3600
Tensione nel cls (comb. quasi perm.) (σ_c)	[daN/cm ²]	3,9 < 112,1
Tensione nel ferro (comb. quasi perm.) (σ_s)	[daN/cm ²]	154,9 < 3600
Verifiche SLE - Fessurazione		
Momento di fessurazione (comb. q.perm.) (M _f)	[daNm]	1029,7 > 108,9
Trave non fessurata.		
Momento di fessurazione (comb. freq.) (M_f)	[daNm]	1029,7 > 116,4
Trave non fessurata.		

3. VERIFICA RIGIDEZZA DEL SOLAIO

Il calcolo viene eseguito considerando l'effettiva geometria del solaio.

3.1 VERIFICA DELLA RIGIDEZZA FLESSIONALE

Il calcolo della rigidezza Flessionale viene eseguito attraverso la formula:

 $K_{Fle} = 12 \cdot E_c \cdot J / L^3$

• Rigidezza in direzione parallela all'orditura del sola	io (asse X)	
Rigidezza iniziale del solaio (K _{F,x,ini})	[kN/m]	1251632
Rigidezza area solaio sinistra (K _{F,x,sin})	[kN/m]	62405
Rigidezza area solaio destra (K _{F,x,des})	[kN/m]	26326948
Rigidezza trave a sinistra del foro (K _{F,x,Tsin})	[kN/m]	302825
Rigidezza trave a destra del foro ($K_{F,x,Tdes}$)	[kN/m]	202869
Rigidezza fascia inferiore (K _{Fle,x,inf})	[kN/m]	55211612
Rigidezza equivalente fascia con foro (K _{Fle,x,foro})	[kN/m]	99292987

Rigidezza fascia superiore (K _{Fle,x,sup})	[kN/m]	10601911
Rigidezza finale del solaio (K _{Fle,x,fin}) Variazione di rigidezza (K _{Fle,x,fin} - K _{Fle,x,ini}) / K _{Fle,x,ini}	[kN/m]	1228216 -2% < ±15%
 Rigidezza in direzione ortogonale all'orditura del solal Rigidezza iniziale del solaio (K_{F,y,ini}) 	<i>io (asse Y)</i> [kN/m]	3470873
Rigidezza area solaio inferiore $(K_{F,y,inf})$ Rigidezza area solaio superiore $(K_{F,y,sup})$ Rigidezza trave inferiore del foro $(K_{F,y,Tinf})$ Rigidezza trave superiore del foro $(K_{F,y,Tsup})$	[kN/m] [kN/m] [kN/m] [kN/m]	2498642 13012187 190700 127754
Rigidezza fascia sinistra (K _{F,y,sin}) Rigidezza equivalente fascia con foro (K _{F,y,foro}) Rigidezza fascia destra (K _{F,y,des})	[kN/m] [kN/m] [kN/m]	5997667759 109783379 14216694
Rigidezza finale del solaio (K _{F,y,fin}) Variazione di rigidezza (K _{F,y,fin} - K _{F,y,ini}) / K _{F,y,ini}	[kN/m]	3227419 -7% < ±15%

3.2 VERIFICA DELLA RIGIDEZZA TAGLIANTE

Il calcolo della rigidezza Tagliante viene eseguito attraverso la formula:

$K_{Tag} = G \cdot A / (\chi \cdot L)$	Con: χ = 1,2
--	--------------

•	• Rigidezza in direzione parallela all'orditura del solaio (asse X)	
	Rigidezza iniziale del solaio (K _{T,x,ini})	[kN/m]	496841
	Rigidezza area solaio sinistra (K)	[kN/m]	182865
	Pigidezza area solaio destra $(K_{1,x,sin})$	[kN/m]	1371/88
	Rigidezza alea solalo destra $(R_{T,x,des})$		1371400
	Rigidezza trave a sinistra dei loro (K _{T,x,Tsin})		98/4/1
	Rigidezza trave a destra del foro (K _{T,x,Tdes})	[kN/m]	864037
	Rigidezza fascia inferiore (K _{T v inf})	[kN/m]	1755504
	Rigidezza equivalente fascia con foro $(K_{T \times foro})$	[kN/m]	3405861
	Rigidezza fascia superiore $(K_{T,x,our})$	[kN/m]	1012791
	S to the test of test	L , J	
	Rigidezza finale del solaio (K _{T.x.fin})	[kN/m]	540360
	Variaziono di rigidozza (K K) / K		00/ - 150/
	Variazione ul rigiuezza ($\kappa_{T,x,fin} - \kappa_{T,x,ini}$) / $\kappa_{T,x,ini}$		970 < 11370
•	• Rigidezza in direzione ortogonale all'orditura del solaio	o (asse Y)	970 < 11370
•	 Rigidezza in direzione ortogonale all'orditura del solaio Rigidezza iniziale del solaio (K_{T,y,ini}) 	o <i>(asse Y)</i> [kN/m]	1056784
•	<i>Rigidezza in direzione ortogonale all'orditura del solaio</i> Rigidezza iniziale del solaio ($K_{T,y,ini}$) Rigidezza area solaio inferiore ($K_{T,y,ini}$)	o <i>(asse Y)</i> [kN/m] [kN/m]	1056784 1025451
•	 Rigidezza in direzione ortogonale all'orditura del solaio Rigidezza iniziale del solaio (K_{T,y,ini}) Rigidezza area solaio inferiore (K_{T,y,inf}) Rigidezza area solaio superiore (K_{T,y,inf}) 	o <i>(asse Y)</i> [kN/m] [kN/m] [kN/m]	1056784 1025451 1777448
•	<i>Rigidezza in direzione ortogonale all'orditura del solaio</i> Rigidezza iniziale del solaio ($K_{T,y,ini}$) Rigidezza area solaio inferiore ($K_{T,y,ini}$) Rigidezza area solaio superiore ($K_{T,y,inf}$) Rigidezza trave inferiore del foro ($K_{T,y,sup}$)	o <i>(asse Y)</i> [kN/m] [kN/m] [kN/m] [kN/m]	1056784 1025451 1777448 846404
•	<i>Rigidezza in direzione ortogonale all'orditura del solaio</i> Rigidezza iniziale del solaio ($K_{T,y,ini}$) Rigidezza area solaio inferiore ($K_{T,y,inf}$) Rigidezza area solaio superiore ($K_{T,y,inf}$) Rigidezza trave inferiore del foro ($K_{T,y,Tinf}$) Rigidezza trave superiore del foro ($K_{T,y,Tinf}$)	o <i>(asse Y)</i> [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]	9% < 113% 1056784 1025451 1777448 846404 740603
•	Rigidezza in direzione ortogonale all'orditura del solaio Rigidezza iniziale del solaio ($K_{T,y,ini}$) Rigidezza area solaio inferiore ($K_{T,y,inf}$) Rigidezza area solaio superiore ($K_{T,y,sup}$) Rigidezza trave inferiore del foro ($K_{T,y,Tinf}$) Rigidezza trave superiore del foro ($K_{T,y,Tsup}$)	o <i>(asse Y)</i> [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]	9% < 113% 1056784 1025451 1777448 846404 740603
•	Variazione di figidezza ($K_{T,x,fin} - K_{T,x,ini}$) / $K_{T,x,ini}$ • Rigidezza in direzione ortogonale all'orditura del solaioRigidezza iniziale del solaio ($K_{T,y,ini}$)Rigidezza area solaio inferiore ($K_{T,y,inf}$)Rigidezza area solaio superiore ($K_{T,y,sup}$)Rigidezza trave inferiore del foro ($K_{T,y,Tinf}$)Rigidezza trave superiore del foro ($K_{T,y,Tinf}$)Rigidezza fascia sinistra ($K_{T,y,sin}$)	o <i>(asse Y)</i> [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]	9% < 113% 1056784 1025451 1777448 846404 740603 12681410
•	Variazione di rigidezza ($K_{T,x,fin} - K_{T,x,ini}$) / $K_{T,x,ini}$ • Rigidezza in direzione ortogonale all'orditura del solaioRigidezza iniziale del solaio ($K_{T,y,ini}$)Rigidezza area solaio inferiore ($K_{T,y,inf}$)Rigidezza area solaio superiore ($K_{T,y,sup}$)Rigidezza trave inferiore del foro ($K_{T,y,Tinf}$)Rigidezza trave superiore del foro ($K_{T,y,Tsup}$)Rigidezza fascia sinistra ($K_{T,y,sin}$)Rigidezza fascia sinistra ($K_{T,y,sin}$)Rigidezza equivalente fascia con foro ($K_{T,y,fore}$)	o <i>(asse Y)</i> [kN/m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]	1056784 1025451 1777448 846404 740603 12681410 4389907
•	Variazione di rigidezza (K _{T,x,fin} - K _{T,x,ini}) / K _{T,x,ini} <i>Rigidezza in direzione ortogonale all'orditura del solaio</i> Rigidezza iniziale del solaio (K _{T,y,ini}) Rigidezza area solaio inferiore (K _{T,y,ini}) Rigidezza area solaio superiore (K _{T,y,sup}) Rigidezza trave inferiore del foro (K _{T,y,Tinf}) Rigidezza trave superiore del foro (K _{T,y,Tsup}) Rigidezza fascia sinistra (K _{T,y,sin}) Rigidezza fascia destra (K _{T,y,dec})	o <i>(asse Y)</i> [kN/m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m] [kN/m]	9% < 113% 1056784 1025451 1777448 846404 740603 12681410 4389907 1690855

Rigidezza finale del solaio (K _{T,y,fin})	[kN/m]	1113502
Variazione di rigidezza (K _{T,y,fin} - K _{T,y,ini}) / K _{T,y,ini}		5% < ±15%

3.3 VERIFICA DELLA RIGIDEZZA ASSIALE

Il calcolo della rigidezza Assiale viene eseguito attraverso la formula:

 $K_{Ass} = E_c \cdot A / L$

6724 4685 5625 488 0846
4685 6625 488 0846
6625 488)846
488)846
488)846
488)846
0846
0846
5032
< ±15%
9218
4027
323
35
011
3165

4. COMPUTO MATERIALI

Kilerimento	[ווווו] ש		Q.ta	Lot [!!!]	Massa [ky]
Pos. 1 - trave superiore	12	229	1	2,29	2,03
Pos. 2 - trave superiore	12	229	1	2,29	2,03
Pos. 3 - trave superiore	12	229	1	2,29	2,03
Pos. 4 - trave superiore	12	229	1	2,29	2,03
Pos. 5 - trave superiore	12	229	1	2,29	2,03

Tab. 1 - Lista armature principali e secondarie

Pos. 6 - trave superiore	12	229	1	2,29	2,03
Pos. 7 - trave superiore	12	229	1	2,29	2,03
Pos. 8 - trave sinistra	12	209	1	2,09	1,85
Pos. 9 - trave sinistra	12	209	1	2,09	1,85
Pos. 10 - trave sinistra	12	209	1	2,09	1,85
Pos. 11 - trave sinistra	12	209	1	2,09	1,85
Pos. 12 - trave sinistra	12	209	1	2,09	1,85
Pos. 13 - trave inferiore	12	229	1	2,29	2,03
Pos. 14 - trave inferiore	12	229	1	2,29	2,03
Pos. 15 - trave inferiore	12	229	1	2,29	2,03
Pos. 16 - trave inferiore	12	229	1	2,29	2,03
Pos. 17 - trave inferiore	12	229	1	2,29	2,03
Pos. 18 - trave inferiore	12	229	1	2,29	2,03
Pos. 19 - trave inferiore	12	229	1	2,29	2,03
Pos. 20 - trave destra	12	209	1	2,09	1,85
Pos. 21 - trave destra	12	209	1	2,09	1,85
Pos. 22 - trave destra	12	209	1	2,09	1,85
Pos. 23 - trave destra	12	209	1	2,09	1,85
Pos. 24 - trave destra	12	209	1	2,09	1,85
Pos. 25 - trave destra	12	209	1	2,09	1,85
staffe trave superiore	8	112	11	12,32	4,86
staffe trave inferiore	8	122	11	13,42	5,29
staffe trave sinistra	8	122	9	10,98	4,33
staffe trave destra	8	112	11	12,32	4,86

Tab. 2 - Armature totali per diametro

Diametro	L _{tot} [m]	Massa [kg]
Ø8	49,04	19,34
Ø12	55,05	48,77

Armatura (B450C)	[kg]	69
Calcestruzzo (C25/30)	[m ³]	0,65
Percentuale di armatura in peso Incidenza peso armatura sul volume cls	[%] [kg/m ³]	4,17 104,26

trave rovescia

Capitolo

10.1 Interfaccia

Prima di iniziare il lavoro, occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, opzioni relative ai carichi e alle tensioni ammissibili.

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.

a
S.L.

Fig. 10.1 - Scelta modalità di calcolo.

10.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 10.2 - Guida grafica all'input dei dati.

10.2.1 Dati Elastici

In questa cartella vengono richiesti il numero di campate, le caratteristiche dei materiali e del terreno di fondazione:

- Numero di campate: numero delle campate (senza limitazioni).
- Costante elastica del terreno.
- Sporgenza sottofondazione.
- Coefficiente di omogeneizzazione.
- Copriferro: distanza dall'asse del tondino al filo travetto.
- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici	Campate		Carichi concentrati	
Trave Numero di campate: Sporgenza sottofondazione:	[cm]	2	Costante elastica. Valori consigliati (daN	/cm³)
Copriferro:	[cm]	5	Argilla e limi 0,5	÷1
Calcestruzzo			Argilla compatta 1 ÷	5
Classe del calcestruzzo:	C25/30	•	Sabbia sciolta 0,4	÷1
Rresistenza caratteristica cubic	a (Rck): [daN/cm²]	300	Sabbia mediam. sciolta 1 ÷	3
Resistenza di calcolo:	[daN/cm²]	141,10	Sabbia 3 ÷	10
Resistenza di calcolo tangenzia	le: [daN/cm²]	11,94	Compatta	
Resistenza di calcolo a trazione	c [daN/cm²]	30,70		
Acciaio				
Tipo di acciaio:	B450C	•	[daN/cm²] 2.7	210:
Resistenza caratteristica di sne	r vamento: [daN/cm²]	4500		
Resistenza di calcolo:	[daN/cm²]	3913,04	Costante elastica:	
Coefficiente di omogeneizzazion	ie:	15	[daN/cm ²] 1,6	

Fig. 10.3 - Scheda Dati Elastici.

10.2.2 Dati Geometrici e Peso Proprio

In questa cartella vanno inseriti per ogni campata le caratteristiche geometriche ed il peso proprio:

- Luce: distanza tra due appoggi.
- Peso Proprio: peso di un metro di trave. Se l'opzione Modalità Carichi è impostata su Automatico, il campo non è editabile e il programma valuta automaticamente il peso proprio sulla base dei dati della sezione per quella campata.
- Base Anima: per sezioni a T è il valore della base minore; per sezioni rettangolari può essere posto pari a zero oppure pari alla base maggiore indifferentemente.
- Base Maggiore: rappresenta il valore della base maggiore.
- Altezza Ala: per sezioni a T è lo spessore dell'ala; per sezioni rettangolari può essere posto pari a zero oppure pari all'altezza totale indifferentemente.
| Dati Elastici | | | | Campate | | | Carichi concentrati | | |
|---------------|--------------------------------|-----------|-----------------|---------------|------------------|----------------|---------------------|----------|--|
| C | Dati Geometrici e Peso Proprio | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | Campata | Luce | Peso
Proprio | Base
Anima | Base
Maggiore | Altezza
Ala | Altezza
Totale | Copia | |
| | n. | [cm] | [daŃ/m] | [cm] | [cm] | [cm] | [cm] | Incolla | |
| | sb. sin | 50 | 1200 | 40 | 80 | 40 | 80 | | |
| | 1 | 400 | 1200 | 40 | 80 | 40 | 80 | Cancella | |
| | 2 | 500 | 1200 | 40 | 80 | 40 | 80 | | |
| | sb. des | 50 | 1200 | 40 | 80 | 40 | 80 | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | Applica | |
| i | Page minore | compoto 1 | | | | | | | |
| | Annulla | | | | | | | | |
| | Selezione celle: C2·C2 | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

Fig. 10.4 - Scheda Campate.

10.2.3 Definizione Appoggi e Carichi Concentrati

In questa cartella vanno inseriti il nome e le dimensioni dei pilastri, gli scarichi e le coppie concentrati ai piedi dei pilastri:

- Denominazione: carattere alfanumerico atto a descrivere il piede del pilastro.
- Larghezza Pilastro: ingombro del pilastro.
- Scarico Pilastro: sforzo normale del pilastro.
- Coppia Concentrata: momento al piede del pilastro.

Dati Elastici Campate Carichi concent						ichi concentrati			
C	Definizione Appoggi e Carichi concentrati								
									1
	Appoggio	Denomi-	Largh. Pilastro	Forza perm. G1	Forza perm. G2	Forza var. Qk1	Momento var. Qk1	Codice Carico	Copia
	n.	nazione	[cm]	[daN]	[daN]	[daN]	[daNm]	Qk1	Incolla
	1	1	30	12000	6000	14000	0	2	
	2	2	50	14000	10000	11000	-3000	2	Cancella
	3	3	30	11000	14500	12000	0	2	
									Applica
	Larghezza pilastro 2								
1	Selezione celle: B2:B2								

Fig. 10.5 - Scheda Carichi concentrati.

10.3 Opzioni Trave Rovescia

Per accedere alle Opzioni Trave Rovescia, cliccare sull'icona sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Trave Rovescia o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

10.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo ferri di parete. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per eventuali ferri di parete a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Ancoraggio diritto. Lunghezza di ancoraggio da adottare per i ferri diritti superiori ed inferiori e per i cavallotti.
- Piega estremità. Lunghezza da adottare per le estremità dei ferri diritti superiori ed inferiori e dei cavallotti secondo il modello scelto nel menu a tendina proposto.
- Ancoraggio staffa. Lunghezza di ancoraggio delle estremità delle staffe.
- Taglio affidato ai ferri di parete. Percentuale del taglio da affidare ai ferri di parete con valore limite pari al 50%.

 Taglio affidato ai sagomati. Percentuale del taglio affidato a ferri sagomati con valore limite pari al 40%.

Opzioni Trave Rovescia ×							
Armatura Divisioni Luce Quotature	1						
Diametri	Ancoraggi						
[mm] 12 Ø min. armatura principale	[cm] 60 Ancoraggio diritto.						
[mm] 12 Ø min. armatura di parete	[cm] 15 Piega estremità						
[mm] 8 Ø min. armatura a staffe	[cm] 8 Ancoraggio staffa						
[cm] 7 Passo minimo delle staffe	[%] 50 Taglio affidato ai ferri di parete						
,	[%] 40 Taglio affidato ai sagomati						
(OK Annulla							

Fig. 10.6 - Finestra opzioni, scheda Armatura.

10.3.2 Sezione Divisioni campata

• Numero di divisioni da elaborare. Indica il numero delle parti in cui suddividere la luce della scala e per le quali poter disporre delle caratteristiche della sollecitazione nella relazione.

Opzioni Trave Rovescia ×						
Armatura Divisioni Luce Quotature						
5	Numero di divisioni da elaborare per ciascuna campata.					
	OK Annulla					

Fig. 10.7 - Finestra opzioni, scheda Divisioni campata.

10.3.3 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Trave Rovescia	×						
Armatura Divisioni Luce Quotature							
Dimensioni testo							
[mm] 14 Altezza del font per i titoli.							
[mm] 10 Altezza del font per le indicazioni.							
[mm] 8 Altezza del font per la quotatura dei ferri.							
OK Annulla							

Fig. 10.8 - Finestra opzioni, scheda Quotature.

10.4 Diagrammi e schemi di carico

Premendo il tasto Diagrammi della barra degli strumenti (oppure facendo clic sulla voce Diagrammi del Menu Vista) si apre una finestra divisa in quattro riquadri dove sono riprodotti i diagrammi del momento flettente, del taglio, delle pressioni sul terreno e degli abbassamenti. Al passaggio del mouse, per ogni rappresentazione, vengono evidenziati l'ascissa misurata a partire dall'appoggio di sinistra ed il valore del relativo diagramma in quella posizione.

Fig. 10.9 - Finestra Diagrammi delle caratteristiche.

10.5 Armature

Dopo l'immissione dei dati della struttura, all'avvio dell'elaborazione, viene richiesto di scegliere tra la predisposizione del tutto automatica delle armature necessarie e la possibilità di gestire i ferri secondo le proprie esigenze.

10.5.1 La finestra di interfaccia delle armature

Fig. 10.10 - Finestra di interfaccia delle armature della trave rovescia.

L'interfaccia permette di analizzare e/o modificare le armature e comprende:

- la finestra principale dove, oltre alla sezione longitudinale della trave, sono disegnati i ferri con le loro quotature;
- tre finestre laterali dalle quali si selezionano i ferri longitudinali, i ferri di parete e le staffe da inserire nella trave;
- una finestra superiore dove, ad ogni clic del mouse, si alternano le visualizzazioni della distinta staffe, del diagramma del momento e del taglio con sovrapposizione dei rispettivi valori resistenti;
- una finestra nell'angolo superiore sinistro dove è visibile, in modo interattivo, la sezione della trave con quote e posizione dei ferri, relativa alla posizione corrente del mouse nella finestra principale.

10.5.2 Predisposizione automatica delle armature

In fase di elaborazione dei dati introdotti per la trave, rispondere affermativamente alla richiesta di scegliere il tipo di inserimento automatico per le armature. Le armature vengono individuate a partire dai valori massimi delle caratteristiche di sollecitazione. La scelta dei diametri (al massimo due) viene eseguita a partire dal diametro minimo indicato nelle opzioni del modulo.

10.5.3 Disposizione manuale e modifica delle armature

Scegliendo di personalizzare le armature basta selezionare con il tasto sinistro del mouse le armature desiderate, trascinarle nel punto voluto e rilasciare il tasto del puntatore. Dalla finestra delle proprietà che appare a questo punto, si possono effettuare tutte le scelte inerenti al ferro.

• **Introdurre un ferro longitudinale.** Nella finestra Armature Longitudinali sono elencati 8 tipi di ferro longitudinale che è possibile inserire nella trave. Ogni tipo di ferro è rappresentato da un'icona che lascia intendere quale sia la sua morfologia e la posizione che prenderà all'interno

della trave. Sono disponibili due ferri dritti (inferiore e superiore), quattro piegati e due sagomati a molla per gli sbalzi.

- **Introdurre un ferro di parete.** Nella finestra Ferri di Parete è raffigurata un'icona con la quale si possono inserire nella trave i ferri di parete utili per assorbire parte del taglio
- **Introdurre un blocco di staffe.** Nella finestra Staffe si hanno a disposizione 4 tipologie di icone il cui scopo è solo quello di migliorare e velocizzare l'inserimento delle staffe.
 - Disposizione differenziata agli estremi: questo tipologia consente di posizionare contemporaneamente tre blocchi di staffe, due in prossimità degli appoggi ed uno centrale in modo da poterne differenziare il passo e, allo stesso tempo, possano risultare contigui.
 - Disposizione differenziata a sinistra: in questo caso i blocchi introdotti sono due con quello più corto a sinistra.
 - Disposizione differenziata a destra: qui i blocchi introdotti sono ancora due con quello più corto a destra.
 - Disposizione uniforme: con questa scelta si ottiene un solo blocco uniforme che occupa l'intera campata.

Dopo aver effettuato la scelta desiderata e trascinato il mouse in corrispondenza della campata voluta, appare la finestra proprietà attraverso la quale si possono modificare i parametri relativi ad ogni ferro o gruppo di staffe prima di premere il tasto di conferma.

10.5.4 La barra delle armature

Sulla barra delle armature della finestra principale si trovano le icone che permettono una gestione agevole di alcune proprietà e funzioni dei ferri introdotti.

Fig. 10.11 - Barra delle armature.

- Carica armatura ultimo salvataggio: se esistente, permette di caricare l'armatura precedentemente salvata eliminando quella corrente.
- 🔹 🛅 Salva armatura corrente: salva l'armatura disposta previo salvataggio della struttura.
- 🖻 Proprietà: visualizza la finestra Proprietà del ferro selezionato.
- Gast Finestra grafici → Momento resistente: visualizza nella finestra superiore il diagramma del momento flettente e aggiorna quello resistente.
- Gasting Taglio resistente: visualizza nella finestra superiore il diagramma del taglio e aggiorna quello resistente.
- G ➤ Finestra grafici → Distinta staffe: visualizza nella finestra superiore la distinta delle staffe per ogni campata.
- 💈 Aggiorna finestra grafici: aggiorna la visualizzazione corrente della finestra superiore.
- Allinea al copriferro: adegua l'altezza del blocco di staffe selezionato alla campata corrente e lo riposiziona rispettando il copriferro.

- Allinea agli appoggi: estende le estremità del ferro selezionato fino agli assi degli appoggi della campata corrente.
- Centra sull'appoggio: sposta il ferro selezionato fino a centrarlo sull'appoggio prossimo al puntatore.
- 💼 Aumenta numero ferri: aumenta il numero di ferri rappresentato dal ferro selezionato.
- Riduci numero ferri: riduce il numero di ferri rappresentato dal ferro selezionato.
- 🍫 Aumenta diametro: aumenta il diametro del ferro selezionato.
- Riduci diametro: riduce il diametro del ferro selezionato.
- Aumenta passo staffe: aumenta il passo del blocco di staffe selezionato.
- Riduci passo staffe: riduce il passo del blocco di staffe selezionato.
- Elimina selezione: elimina il ferro selezionato.
- M Elimina staffe: permette di eliminare tutti i blocchi di staffe presenti.
- Elimina longitudinali: permette di eliminare tutti i ferri longitudinali presenti.
- Elimina tutto: elimina sia i ferri longitudinali che i blocchi di staffe presenti.
- Aggiorna calcoli: riesegue le verifiche necessarie dopo una variazione delle armature.
- Snap 5 permette, se attivato, spostamenti (con mouse o tasti direzionali) su una

griglia con passo indicato a fianco.

10.5.5 Funzioni sulla barra di stato

Sulla barra di stato, nella parte bassa dello schermo, sono presenti un campo che indica lo stato attuale dello SNAP (ON/OFF) ed un campo che indica lo stato attuale della funzione ORTHO (ON/OFF). Lo stato di queste funzioni può essere cambiato facendo un doppio clic sul campo medesimo.

Fig. 10.12 - Funzioni sulla barra di stato

Con la funzione ORTHO si limita il puntatore a spostamenti solo orizzontali o verticali. Tale funzione si rende utile per spostare un ferro senza perdere l'allineamento oppure per ottenere uno stiramento del ferro lungo il suo asse.

10.5.6 Finestra proprietà dei ferri longitudinali

La visualizzazione della finestra delle proprietà di un ferro si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un ferro già introdotto si può procedere in due modi:

- selezionare un ferro e premere il tasto Proprietà sulla barra delle armature;

- posizionare il puntatore su un ferro, premere il tasto destro del mouse e selezionare la voce di menù Proprietà.

Ferro Longitudinale						
Posizione 3 - Diritto superiore						
Numero di ferri 2 💌 Ø 24 💌						
L principale intera campata 💌						
Lunghezza di Ancoraggio Sinistra Destra						
in centimetri 60 45						
🗖 in numero di diametri 📃 💌						
Estremità Geometria Quotatura						
Sinistra Destra						
· · · · · · · · · · · · · · · · · · ·						
∆x 0 cm 0 cm						
∆y .15 cm .15 cm						
Δx L _{Ancor}						
ΔΥ						
OK Annulla						

Fig. 10.13 - Finestra proprietà delle armature longitudinali.

La finestra delle proprietà consente di configurare o modificare le caratteristiche di un ferro.

- Posizione e denominazione del ferro: indicano la posizione che il ferro occupa nella lista dei ferri e la tipologia del ferro selezionato.
- Numero dei ferri e diametro: il diametro ed il numero di ferri rappresentati da quello selezionato.
- Lunghezza principale e riferimento: da due liste a discesa si possono selezionare la lunghezza principale espressa in termini di campata ed il riferimento a partire dal quale va valutata la lunghezza stessa (es.: se le scelte fatte fossero 1+1/4 di campata e da sinistra, avremmo, partendo da sinistra, una lunghezza principale pari alla luce della campata corrente più un quarto della luce della campata successiva). In fase di inserimento di un nuovo ferro, viene proposta una lunghezza iniziale pari alla luce della campata corrente e che potrà essere modificata sia operando una scelta diversa dalla lista e sia intervenendo sulla scheda Geometria descritta in seguito. Nel caso in cui la lunghezza principale venga assegnata tramite la scheda Geometria, i due campi predisposti risulteranno vuoti.
- Lunghezza di ancoraggio: è la lunghezza in aggiunta a quella principale e della quale non se ne tiene conto nelle verifiche e nella definizione dei diagrammi resistenti. questo parametro può essere inserito in duplice modo:
 - esprimendolo in centimetri;
 - esprimendolo in numero di diametri.

• Scheda Estremità. In questa scheda vanno inseriti il tipo di estremità sia destra che sinistra da selezionare da un elenco a discesa ed i valori come indicato nell'immagine di fig. 6.18.

••••	-	-

••••		· ·
••••		

Fig. 10.14 - Tipi di estremità per le armature longitudinali.

 Scheda Geometria. In questa sezione è possibile modificare il punto di inserimento del ferro (estremo di sinistra) attraverso le coordinate X e Y e la geometria mediante una tabella dove il ferro viene suddiviso in singoli tratti ad ogni deviazione lungo il suo sviluppo. Per ogni tratto si possono modificare la lunghezza assoluta del tratto stesso e/o le proiezioni sugli assi x e y mentre la colonna relativa all'inclinazione del tratto è solo di tipo informativo. Il tratto interessato dalla modifica viene evidenziato in rosso.

E	stremità	Geomet	riaj 🚺	Quotatura				
Coord. origine [cm]: × 145 Y 344,231								
Tratto	L [cm]	Dx [cm]	Dy [cm]	Angolo (*)				
1	60,000	-60,000	0,000	-180,000000				
2	70,000	0,000	70,000	-90,000000				
3 65,000		65,000	0,000	0,000000				
ee								
	/							
	<u></u>							

Fig. 10.15 - Scheda di modifica della geometria del ferro longitudinale.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del ferro nonché decidere se mostrare:
 - la scritta **Pos.** seguita da un numero identificativo;
 - la scritta **inf, sup, par** ad indicare la posizione del tratto (inferiore, superiore o intermedia per ferri di parete). -Solo per i moduli ScaRam e ScaGin -;
 - o la lunghezza totale del ferro comprendente le lunghezze di ancoraggio e le estremità;
 - il numero dei ferri ed il diametro;
 - le quotature parziali dei singoli tratti.

Estremità	Geometria	Quotatura
🔽 Mostra la scritta P	os.x 🔲 Mostra ind	licatore inf/sup/par
Font: Colore:	7, Arial	
🔽 Mostra lunghezza	totale 🔽 Mostra nu	mero ferri e diametro
Font: Colore:	9, Arial	
Mostra quotature	parziali	
Font: Colore: _ 	7, Arial	

Fig. 10.16 - Scheda di modifica delle quotature del ferro longitudinale.

10.5.7 Finestra proprietà delle staffe

La visualizzazione della finestra proprietà delle staffe si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un blocco staffe già introdotto si può procedere in due modi:

- selezionare il blocco e premere il tasto Proprietà sulla barra delle armature;

- posizionare il puntatore su un blocco staffe, premere il tasto destro del mouse e selezionare la voce di menù Proprietà.

La finestra delle proprietà consente di configurare o modificare le caratteristiche di uno o più gruppi di staffe.

- Scheda Blocchi. Ogni qualvolta si introducono uno o più gruppi di staffe si visualizza questa scheda dove risultano abilitate solo le sezioni relative ai blocchi immessi. Se invece si sta modificando un gruppo di staffe già presenti, nella scheda si visualizza una sola sezione denominata *Definizione Blocco*. Per ogni sezione sono definibili le caratteristiche del blocco.
 - Diametro Ø: diametro delle staffe del blocco.
 - Origine: ascissa, valutata rispetto al bordo sinistro della finestra principale, alla quale ha inizio il blocco.
 - Ampiezza: dimensione del blocco lungo l'asse della campata.
 - Bracci: numero di bracci delle staffe (2 o 4).
 - Passo: distanza tra due staffe nella direzione del blocco.

Armatura Staffe - Campata 1						
Blocchi Staffa Quotatura						
Blocco Sinistro	Ø 8 🗨					
Origine 15 cm	Ampiezza 85 cm					
Bracci 2	Passo 15 cm					
Blocco Centrale	Ø 8 🔻					
Origine 100 cm	Ampiezza 200 cm					
Bracci 2 💌	Passo 20 cm					
Blocco Destro	Ø 8 –					
Origine 300 cm	Ampiezza 75 cm					
Bracci 2	Passo 15 cm					
	OK Annulla					

Fig. 10.17 - Scheda Blocchi della finestra proprietà staffe.

- Scheda Staffa. In questa scheda è visibile una configurazione interattiva delle staffe ed è
 possibile modificare, oltre alla lunghezza di ancoraggio delle estremità, il tipo di chiusura
 potendo scegliere tra:
 - Chiusura a 45°: le estremità sono inclinate di 45°.
 - Chiusura a uncino: le estremità sono raccordate a forma di uncino.
 - Chiusura a cappello: la staffa è composta da due elementi distinti a forma di U che, sovrapposti, chiudono la staffa.

Armatura Staffe - Campata 1					
Blocchi Staffa Quotatura					
⊙ Chiusura a 45*					
Chiusura a uncino					
C Chiusura a cappello					
L Ancoraggio 8 cm					
LA					
OK Annulla					

Fig. 10.18 - Scheda Staffe della finestra proprietà staffe.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del blocco staffe e selezionare gli elementi da mostrare:
 - Mostra la scritta Pos.x: fa vedere, in prossimità del gruppo o della staffa, la scritta Pos. seguita da un numero identificativo sia nella finestra principale che nella finestra staffe e di conseguenza nei disegni esecutivi.
 - Mostra numero staffe e diametro del blocco: fa vedere il numero di staffe presenti nel blocco ed il diametro.
 - Mostra lunghezza staffa: fa vedere la lunghezza totale della staffa comprendente le lunghezze di ancoraggio agli estremi.
 - Mostra quotature parziali staffa: fa vedere le quotature parziali dei singoli tratti della staffa.

Armatura Staffe - Campata 1
Blocchi Staffa Quotatura
Mostra la scritta Pos.x Font: 7, Arial Colore:
 Mostra numero staffe e diametro del blocco Mostra lunghezza staffa Font: 8, Arial Colore:
✓ Mostra quotature parziali staffa Font:
() Annulla

Fig. 10.19 - Scheda quotatura della finestra proprietà staffe.

10.5.8 Modificare senza la finestra proprietà

Alcune caratteristiche del ferro possono essere modificate senza l'ausilio della finestra proprietà.

- Punto origine: selezionare il ferro o il gruppo staffe e, tenendo premuto il tasto sinistro del mouse, trascinare la selezione nel punto voluto. In alternativa, dopo la selezione si possono utilizzare i tasti direzionali della tastiera. In entrambi i casi il movimento avviene lungo una griglia definita con la funzione SNAP e può essere vincolato dalla funzione ORTHO.
- Numero di ferri: selezionare il ferro con il mouse e, sulla barra delle armature, premere il tasto
 una sola volta per aumentare il numero di ferri di una unità, invece il tasto
 per ridurne il numero. Lo stesso risultato si ha premendo il tasto destro del mouse quando è posizionato sopra al ferro e scegliere Aumenta numero ferri oppure Riduce numero ferri dal menù che appare.

- Diametro: selezionare il ferro o il gruppo staffe e, sulla barra delle armature, premere il tasto
 per aumentare il diametro ed il tasto
 per diminuirlo. Anche in questo caso si può usare il tasto destro del mouse e quindi selezionare Aumenta diametro ferro/staffe oppure Riduce diametro ferro/staffe per ottenere lo stesso effetto.
- Allinea agli appoggi: per riposizionare un ferro in modo da estendere gli estremi fino agli assi degli appoggi della campata corrente, premere il tasto sulla barra delle armature oppure scegliere Allinea agli appoggi dal menu che appare premendo il tasto destro.
- Centra sull'appoggio: per riposizionare un ferro in modo da risultare centrato sull'appoggio più vicino al puntatore, premere il tasto Sulla barra delle armature oppure scegliere Centra sull'appoggio dal menu che appare premendo il tasto destro.
- Allinea al copriferro: per adeguare l'altezza del blocco di staffe selezionato alla campata corrente e riposizionarlo rispettando il copriferro, premere il tasto sulla barra delle armature oppure scegliere Allinea al copriferro dal menu che appare premendo il tasto destro del mouse.
- Allinea ai pilastri: per estendere il blocco di staffe selezionato al filo dei pilastri della campata corrente, premere il tasto sulla barra delle armature oppure scegliere Allinea al filo pilastri dal menu che appare premendo il tasto destro del mouse.
- Elimina selezione: elimina il ferro o il blocco staffe selezionato se viene premuto il tasto sulla barra delle armature oppure selezionando Elimina ferro o Elimina gruppo staffe dal menù tasto destro del mouse.
- Elimina staffe: elimina in modo permanente tutti i gruppi di staffe quando viene premuto il tasto [™] sulla barra delle armature.
- Elimina longitudinali: elimina in modo permanente tutti i ferri quando viene premuto il tasto
 sulla barra delle armature.
- Elimina tutto: elimina in modo permanente tutti i ferri longitudinali e tutte le staffe quando viene premuto il tasto sulla barra delle armature.
- Modifica geometria di un ferro: con il solo uso del mouse e con l'aiuto delle funzioni SNAP e ORTHO si può modificare nel modo voluto la lunghezza di un singolo tratto del ferro. Al momento della selezione, sugli estremi di ogni singolo tratto del ferro appaiono delle maniglie di colore grigio; facendo doppio clic su una maniglia, questa assume il colore rosso. A questo punto cliccando su una maniglia diversa da quella selezionata e trascinando il mouse col tasto sinistro premuto, l'effetto sarà quello di uno stiramento del solo tratto attiguo alla maniglia rossa e dalla parte del puntatore.
- Modifica geometria di un gruppo staffe: dopo aver impostato nel modo voluto le funzioni SNAP e ORTHO, selezionare con il mouse un blocco di staffe. Al momento della selezione, su ogni angolo del blocco appaiono delle maniglie di colore grigio; facendo doppio clic su una maniglia di un lato, entrambe le maniglie di quel lato assumono il colore rosso. A questo punto cliccando su una maniglia dell'altro lato e trascinando il mouse col tasto sinistro premuto, l'effetto sarà quello di uno stiramento del blocco ed il valore del passo del nuovo blocco sarà uguale a quello preesistente.

10.6 Esempio di calcolo di una trave di fondazione

Calcolo e verifica agli Stati Limite di una trave rovescia alla Winkler a due campate. Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb38k.

Fig. 10.20 - Diagramma di momento e taglio.

RELAZIONE DI CALCOLO

TRAVE ROVESCIA (metodo di Winkler) Metodo di calcolo e verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

	15
[cm]	5
[kg/cm ³]	2,50
[1/m]	0,27
[m]	11,67
[kg/cm ²]	250
[kg/cm ²]	207,5
[kg/cm ²]	110,2
[kg/cm ²]	2,52
[kg/cm ²]	19,4
	Fe B44k
[kg/cm ²]	4300
[kg/cm ²]	3739,1
	[cm] [kg/cm ³] [1/m] [m] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²]

GEOMETRIA E PESO PROPRIO (val. caratteristico e di calcolo)

Campata Luce B.Min B.Mag. H.Ala H.Tot. Inerzia PesoP.(Gk) PesoP.(Gd)

n.	[cm]	[cm]	[cm]	[cm]	[cm]	[m ⁴]	[kg/m]	[kg/m]
1	525	40	100	40	100	0,050033	1600	2240
2	450	40	100	40	100	0,050033	1600	2240
Sbalzo								
sin.	50	40	100	40	100	0,050033	1600	2240
des.	50	40	100	40	100	0,050033	1600	2240

AZIONI SUI PILASTRI - VALORI CARATTERISTICI

Pilastro n.	Forza perm. (G _k) [t]	Forza var. (Q _k) [t]	Coppia (G _k) [t∙m]
1	16,1	5,3	0,0
2	19,7	8,4	0,0
3	18,6	4,2	-0,7

AZIONI SUI PILASTRI - VALORI DI CALCOLO PER SLU

Pilastro n.	Forza perm. (G _d) [t]	Forza var. (Q _d) [t]	Coppia (G _d) [t·m]
1	22,54	7,42	0,0
2	41,58	11,76	0,0
3	26,04	5,88	-0,98

SOLLECITAZIONI E DEFORMAZIONI DI TRAVE E TERRENO

Sezione [m]	Momento [t·m]	Taglio [t]	Sigma ter. [kg/cm ²]	Abbassam. [cm]	Rotazione [rad]
Sbalzo sinisti	` 0				
0,00	0,0	0,0	1,190	0,476	-0,0004049
0,25	0,4	3,0	1,165	0,466	-0,0004051
0,50	1,5	5,9	1,140	0,456	-0,0004066
Campata 1-2					
0,00	1,5	-24,1	1,140	0,456	-0,0004046
1,05	-17,7	-12,7	1,039	0,415	-0,0003394
2,10	-25,7	-2,5	0,970	0,388	-0,0001730
3,15	-23,2	7,2	0,949	0,380	-0,0000129
4,20	-10,5	16,9	0,972	0,389	-0,0001431
5,25	12,5	27,1	1,013	0,405	0,0001422
Campata 2-3					
0,00	12,5	-26,3	1,013	0,405	0,0001422
0,90	-7,0	-17,2	1,041	0,417	0,0001291
1,80	-18,3	-7,8	1,079	0,431	0,0002134
2,70	-20,9	2,2	1,141	0,456	0,0003417

3,60	-14,1	12,9	1,231	0,493	0,0004572
4,50	2,8	24,8	1,341	0,536	0,0004986
Sbalzo destro					
0,00	1,8	-7,1	1,341	0,536	0,0004986
0,25	0,5	-3,6	1,372	0,549	0,0004968
0,50	0,0	0,0	1,403	0,561	0,0004965

VERIFICA SEZIONI MAGGIORMENTE SOLLECITATE

Verifica allo S.L.U.

Momento massimo positivo (appoggio 2)	[t·m]	12,5
Armatura necessaria inferiore	[cm ²]	10,2 (9ø12)
Armatura superiore	[cm ²]	19,2 (17ø12)
Asse neutro (x/d = 0,11 < 0,45)	[cm]	10,6
Momento resistente ultimo (M _{Rd})	[t·m]	65,4
Momento massimo negativo (campata 1)	[t·m]	-26,0
Armatura necessaria superiore	[cm ²]	10,2 (9ø12)
Armatura inferiore	[cm ²]	5,7 (5ø12)
Asse neutro (x/d = 0,08 < 0,45)	[cm]	8,0
Momento resistente ultimo (M _{Rd})	[t·m]	35,0
Taglio massimo (appoggio 2)	[t]	27,1
Armatura staffe a 2 bracci	[cm ² /m]	5,43 (ø10/15 cm)
Armatura ferri di parete	[cm ²]	3,6 (2+2ø12)
Resistenza a taglio del cls non armato (V _{Rd1})	[t]	10,9
Resistenza taglio bielle di cls compresse (V _{Rd2})	[t]	125,7
Resistenza con armatura a taglio (V _{Rd3})	[t]	190,4

Verifiche S.L.E. sez. appoggio 2 per comb. rara e quasi permanente

Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	11,2 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	975,1 < 3010
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	11,2 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	975,1 < 2150
Momento di fessurazione (comb. rara) (M _f)	[t·m]	23,7 > 9,0
Trave non fessurata.		

Verifiche S.L.E. sez. campata 1 per comb. rara e quasi permanente

Tensione nel cls (comb. rara) (σ_c) Tensione nel ferro (comb. rara) (σ_s) Tensione nel cls (comb. quasi perm.) (σ_c) Tensione nel ferro (comb. quasi perm.) (σ_s) Momento di fessurazione (comb. rara) (M_f) Trave non fessurata.	[kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²] [t·m]	25,5 < 124,5 2026,7 < 3010 25,5 < 93,4 2026,7 < 2150 24,3 > 18,6
Abbassamento max per comb. rara (sbalzo des.)	[mm]	4,0
Abbassamento max per comb. q. perm. (sbalzo des.)	[mm]	4,0
Verifica ala allo S.L.U.		
Momento	[kg·m]	1122,4
Taglio	[kg]	5612,0
Armatura a flessione	[cm ²]	3,9

Armatura a taglio	[cm ²]	3,4
Asse neutro (x/d = 0,21 < 0,45)	[cm]	7,9
Momento resistente ultimo (M _{Rd})	[t·m]	23,7
Resistenza a taglio del cls non armato (V _{Rd1})	[t]	24,8
Resistenza taglio bielle di cls compresse (V _{Rd2})	[t]	314,2
Resistenza con armatura a taglio (V _{Rd3})	[t]	111,8

Verifica ala allo S.L.E. per comb. rara e quasi permanente

Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	1,7 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	222,7 < 3010
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	1,7 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	222,7 < 2150
Momento di fessurazione (comb. rara) (M _f)	[t·m]	31,8 > 0,8
Trave non fessurata.		

Verifica del terreno

Tensione massima nel terreno (sbalzo des.) ($\sigma_{t, max}$) [kg/cm²] 1,40 < 2,0

Г

PROSPETTO ARMATURE (con ferri dritti)

	Equit Danata Staffa					Monconi
Camp.	Arm. inf.	sin des	Arm. sup.	sin des	1	
1	5 <i>a</i> 12	Ag12 Ag12	9 <i>a</i> 12	a10/20" a10/20"		
1	5012	4012 4012	9012	Ø10/20 Ø10/20	2	
2	4ø12	4ø12 4ø12	8ø12	ø10/20" ø10/20"		
	1912		0012	<i>p</i> 10/20 <i>p</i> 10/20	3	
Sh. sin.	2ø12	4ø12	2ø12	ø10/20"	5	
00.011.	2012	1,012	2012	910/20		
Sb. des.	2ø12	4ø12	2ø12	ø10/20"		

COMPUTO MATERIALI

Lista Ferri Longitudinali

Pos.	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
1	12	663	9	5967	52,98
2	12	588	8	4704	41,76
3	12	365	2	730	6,48

4	12	372	2	744	6,61
5	12	616	4	1232	21,88
6	12	541	4	1082	19,21
7	12	684	5	3420	30,36
8	12	601	4	2404	21,34

Totali Longitudinali Ltot [m] Massa [k

-

	Ltot [m]	Massa [kg]
Totale Ferri Ø12	202,83	200,62

Lista Staffe						
Pos.	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]	
9	10	560,00	2	1120	6,91	
10	10	560,00	6	3360	20,72	
11	10	560,00	8	4480	27,62	
12	10	560,00	6	3360	20,72	
13	10	560,00	5	2800	17,26	
14	10	560,00	7	3920	24,17	
15	10	560,00	5	2800	17,26	
16	10	560,00	2	1120	6,91	

Ltot [m] Massa [kg] Totale Staffe Ø10 229,6 141,57

Armatura (Fe B 44 k controllato)	[kg]	342
Calcestruzzo (R _{ck} =250)	$[m^3]$	6,88
Magrone (sottofondazione)	$[m^3]$	1,10
Percentuale di armatura in peso	[%]	1,99
Incidenza peso armatura sul volume cls	[kg/m ³]	49,73

Г

🔌 plinto diretto

Il modulo plinto diretto è predisposto per il calcolo ed il disegno degli esecutivi di plinti di fondazione diretti. Il comportamento statico del plinto può essere sia di tipo a mensola (calcolo a flessione), sia di tipo tozzo (calcolo come espansione).

I plinti sono a base rettangolare con presenza o meno di rastremazione, di cordolo per cassaforma e di sottoplinto. È possibile inoltre prevedere la posizione eccentrica del pilastro nelle due direzioni e progettare plinti zoppi.

La verifica delle tensioni alla base del plinto viene eseguita considerando un carico di esercizio per il terreno fornito direttamente dall'utente oppure, su richiesta, valutato in funzione di dati specifici del terreno desunti da prove di laboratorio o in situ. A tal fine i dati del terreno vengono elaborati con diverse teorie (Terzaghi e Vesic) individuando il tipo di rottura del terreno (punzonamento o generale) e quindi il tipo di interazione terreno-fondazione.

Il programma in uscita fornisce la relazione di calcolo, i dati di input, gli scarichi in fondazione, le sollecitazioni, i risultati delle verifiche e prepara gli esecutivi di cantiere.

11.1 Generalità

Prima di iniziare il lavoro, occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, opzioni relative ai carichi e alle tensioni ammissibili.

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.

-Metodo di calcolo e veri	fica
T.A.	S.L.
- Modalità Tonsioni	
C Manuale	
Automatica	
Automatico	

Fig. 11.1 - Scelta modalità di calcolo.

11.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 11.2 - Guida grafica di aiuto all'input dei dati.

11.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.
- Riduzione Sigma ammissibile.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.

ti Elastici 👔 🚺 Dati Geometrici	Dati Terreno	Carichi
Calcestruzzo		
Classe del calcestruzzo:	C25/30	•
Rresistenza caratteristica cubica (Rck):	[daN/cm²] 300	
Resistenza di calcolo:	[daN/cm²] 141,1	
Resistenza di calcolo tangenziale:	[daN/cm²] 2,98	
Resistenza di calcolo a trazione:	[daN/cm²] 11,94	
Tipo di acciaio:	B450C	•
Resistenza caratteristica di snervamento:	[daN/cm²] 4500	
Resistenza di calcolo:	[daN/cm²] 3913,04	
Resistenza di calcolo: Coefficiente di omogeneizzazione:	[daN/cm²] 3913,04	_

Fig. 11.3 - Scheda Dati Elastici.

11.2.2 Dati Geometrici

In questa cartella vanno inseriti i dati geometrici inerenti al plinto.

Dimensioni plinto:

- Altezza plinto: altezza totale del plinto.
- Altezza risega: altezza ala del plinto.
- Base plinto: dimensione del plinto in direzione X.
- Larghezza plinto: dimensione del plinto in direzione Y.
- Copriferro: distanza dall'asse del tondino a l filo esterno.

Dimensioni sottoplinto:

- Altezza magrone.
- Sporgenza magrone.

Dimensioni sezione pilastro:

- Base pilastro.
- Larghezza pilastro.

Eccentricità pilastro:

- In direzione X: eccentricità rispetto al centro del plinto, verso destra o verso sinistra.
- In direzione Y: eccentricità rispetto al centro del plinto, verso l'alto o verso il basso.

Dati Elastici	Dati Geometrici	Dati Terreno	Carich
nto		- Pilastro	
tezza plinto:	[cm] 70	Profondità (dir. Y):	[cm] 30
		Larghezza (dir. X):	[cm] 50
tezza risega:	[cm] 40	Cordolo reggi cassero:	[cm] 0
rofondità plinto (dir. Y):	[cm] 120	Escludi cordolo per	plinto zoppo
nghezza plinto (dir. X):	[cm] 160	Eccentricità	
	(an)	In direzione X:	Sinistra
oprirerro:	[cm] 5	[cm] 0	C Destra
toplinto		Escludi sporgenza m	agrone
tezza magrone:	[cm] 15	In direzione Y:	C Alto
orgenza magrone:	[cm] 15	[cm] 0	€ Basso
	1.0	🔲 Escludi sporgenza п	agrone

Fig. 11.4 - Scheda Dati Geometrici.

11.2.3 Dati Terreno

In questa cartella vanno inseriti i dati relativi al terreno:

- Tipo di terreno: tipo di terreno generico, sabbia o argilla.
- Condizioni del terreno: ipotesi in cui può trovarsi un terreno argilloso e cioè in condizioni drenate o non drenate.
- Eventuale presenza di falda e sua profondità.
- Peso dell'unità di volume del terreno.
- Peso dell'unità di volume saturo del terreno.
- Angolo di attrito interno del terreno.
- Coesione del terreno.
- Modulo di elasticità non drenato (Eo) del terreno.
- Profondità di posa del plinto.
- Carico di esercizio del terreno.
- Coefficiente di sicurezza per il carico di esercizio.

Dati Elastici	Dati Geometrici	Dati Terreno	Carichi
Tino di terreno:		Deck - File ()	
Argilla 🔹	Peso unità di volume:	[daN/m ²]	120
Condizioni del terreno	Peso unità volume saturo:	[daN/m²]	2200
• Drenate	Angolo di attrito interno:	[*]	30
O Non drenate	Coesione:	[daN/cm²]	0
	Modulo non drenato Eo:	[daN/cm²]	0
	Profondità di posa:	[cm]	80
	Carico limite di esercizio	[daN/cm²]	3,29
	Coeff. di sicurezza:		2

Fig. 11.5 - Scheda Dati Terreno.

11.2.4 Carichi

In questa cartella vanno inseriti i carichi agenti sul plinto.

- Forza verticale: sforzo normale del pilastro.
- Momento: momento alla base del pilastro.
- Forza orizzontale: sforzo di taglio del pilastro parallelo a X o ad Y.

Dati Elastici	Dati Geor	metrici	Dati Terreno	ľ	Car	ichi
Peso proprio		Favorevole	- Forze verticali			Favorevole
Peso del plinto: [4	daN] 3513		Forza perm. strutturale:	[daN]	40000	
Peso terreno sovrastante: [/	daN1 1088		Forza perm. non strutturale:	[daN]	0	
	uuii) 1000		Forza variabile:	[daN]	0	
– Forze orizzontali direzio	ne X		- Forze orizzontali direz	ione 1	·	
		Favorevole				Favorevole
Forza perm. strutturale: [daN] 0		Forza perm. strutturale:	[daN]	200	
Forza perm. non strutturale: [daN] 0		Forza perm. non strutturale:	[daN]	0	
Forza variabile: [da	aNm] 0		Forza variabile:	[daN]	300	
Momenti direzione X			- Momenti direzione Y-			
		Favorevole				Favorevole
Momento perm. strutturale:[da	aNm] -1000		Momento perm. strutturale:[daNm]	400	
Momento perm. non strutt.[da	aNm] 0		Momento perm. non strutt. [daNm]	0	
Momento variabile: [da	aNm] 0		Momento variabile: [daNm]	500	
	-,				,	

Fig. 11.6 - Scheda Carichi.

11.3 Opzioni Plinto Diretto

Per accedere alle Opzioni Plinto Diretto, cliccare sull'icona est sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Plinto Diretto o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

11.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo armatura di ripartizione. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per l'armatura di ripartizione a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Piega a uncino. Prolungamento oltre il semicerchio dell'uncino.

Opzioni Plinto Superficiale	×
Armatura Quotature Diametri [mm] [mm] 12 Ø min. armatura principale [mm] 10 Ø min. armatura ripartiz. [mm] 12 Ø min. armatura a staffe.	Ancoraggi [cm] 10 Piega estremità Forma [cm] 0 Ancoraggio staffa
Selezionare gli elementi da computare.	OK Annulla

Fig. 11.7 - Finestra opzioni, scheda Armatura.

11.3.2 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Plinto Supe	erficiale		×
Armatura	Quotature		
Dimensioni te	sto		
[mm] 8 /	Altezza del font per i	titoli.	
[mm] 6	Altezza del font per le	e indicazioni.	
[mm] 6	Altezza del font per la	a quotatura dei ferri.	
		[OK	Annulla

Fig. 11.8 - Finestra opzioni, scheda Quotature.

11.4 Esempio di calcolo di un plinto

Calcolo e verifica alle Tensioni Ammissibili di un plinto diretto. Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb38k.

ELABORATI GRAFICI PRODOTTI:

Fig. 11.9 - Sezione, pianta e armature plinto.

RELAZIONE DI CALCOLO

PLINTO DIRETTO IN C.A. Metodo di verifica: Tensioni Ammissibili

DATI ELASTICI

Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	250
Tensione ammissibile del cls ($\sigma_{c amm}$)	[kg/cm ²]	85
Tensione tang. minima da taglio (τ_{c0})	[kg/cm ²]	5,3
Tensione tang. massima da taglio (τ_{c1})	[kg/cm ²]	16,9
Tensione ammissibile dell'acciaio (σ_{famm})	[kg/cm ²]	2200
Coeff. di omogeneizzazione	50 (]	15
Riduzione tensioni ammissibili	[%]	10
Tensione amm. ridotta del cls	[kg/cm ²]	76,5
Tensione amm. ridotta dell'acciaio	[kg/cm ²]	1980
DATI GEOMETRICI		
Larghezza plinto (dir.X)	[cm]	130
Profondità plinto (dir.Y)	[cm]	130
Altezza plinto	[cm]	65
Altezza risega	[cm]	40
Profondità pilastro (dir.Y)	[cm]	30
Larghezza pilastro (dir.X)	[cm]	30
Cordolo reggicassero	[cm]	5
Spessore magrone	[cm]	20
Sporgenza magrone	[cm]	10
Copriferro	[cm]	5
AZIONI SUL PLINTO		
Forza verticale	[t]	260
Peso proprio plinto	[t]	31,7
Momento	[t·m]	25
DATI TERRENO		
Profondita di posa	[cm]	75
Peso dell'unità di volume del terreno	[kg/m ³]	1700
Angolo di attrito interno del terreno	[°]	30
Coesione	[kg/cm ²]	0,00
Coefficiente di sicurezza		2
Carico limite di rottura del terreno	[kg/cm ²]	5,41
Carico limite di esercizio del terreno	[kg/cm ²]	2,7

SOLLECITAZIONI E ARMATURE NELLE DUE DIREZIONI

Momento massimo (direzione X)	[t·m]	2,7
Taglio massimo	[t]	8,8
Tensione massima nel calcestruzzo ($\sigma_{c max}$)	[kg/cm ²]	25,8
Tensione massima nell'acciaio ($\sigma_{f max}$)	[kg/cm ²]	1445,7
Tensione tangenziale massima ($\tau_{c max}$)	[kg/cm ²]	5,3
Armatura necessaria a flessione	[cm ²]	2,6 (3ø12)
Armatura necessaria a taglio (staffe)	[cm ²]	1,9 (2 staffe ø12)
Armatura necessaria a taglio (piegati)	[cm ²]	1,1 (1ø12)
Tensione massima nel terreno ($\sigma_{t max}$)	[kg/cm ²]	1,74 < 2,7

COMPUTO MATERIALI

Armatura (Fe B 38 k controllato)	[kg]	29
Calcestruzzo (R _{ck} =250)	[m ³]	0,83
Percentuale di armatura in peso	[%]	1,36
Incidenza peso armatura sul volume cls	[kg/m ³]	34,08

Il modulo pilastri consente di progettare e verificare pilastri in c.a. ai vari ordini. Il programma provvede, quando è necessario, a rastremare i pilastri in prossimità delle travi. Il peso proprio ai vari ordini viene calcolato in modo automatico ed aggiunto al carico esterno agente.

Il programma dimensiona e verifica le pilastrate e prepara gli esecutivi di cantiere.

12.1 Generalità

Prima di iniziare il lavoro, occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo appare, sulla destra, l'opzione relativa alla Modalità Tensioni.

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.

T.A.	S.L.
- Modalità Tensioni	
- Modalità Tensioni O Manuale	

Fig. 12.1 - Scelta modalità di calcolo.

12.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 12.2 - Guida grafica di aiuto all'input dei dati.

12.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.
- Riduzione Sigma ammissibile del calcestruzzo.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici	ſ)ati Geometrici
alcestruzzo		
Classe del calcestruzzo:	C25/30	-
Rresistenza caratteristica cubica (Rck):	[daN/cm²]	300
Resistenza di calcolo:	[daN/cm²]	141,1
Resistenza di calcolo tangenziale:	[daN/cm²]	2,98
Resistenza di calcolo a trazione:	[daN/cm²]	11,94
Riduzione tensione di calcolo:	[%]	25
cciaio		
lipo di acciaio:	B450C	•
Resistenza caratteristica di snervamento:	[daN/cm²]	4500
Resistenza di calcolo:	[daN/cm²]	3913,04
Coefficiente di omogeneizzazione:		15

Fig. 12.3 - Scheda Dati Elastici.

12.2.2 Dati Geometrici e Carichi

- Numero di piani.
- Sforzo normale al piano tipo.
- Interpiano.
- Copriferro.

Dati Elastici		Dati Geo	metrici
Pilastro			Favorevole
Carico strutturale fisso a	piano tipo:	[daN] 20000	
Carico non strutturale fis	so al piano tipo:	[daN] 12000	
Carico variabile al piano	tipo:	[daN] 10000	
Numero di piani:		[daN] 3	
Interpiano tipo:		[cm] 330	
Quota primo piano:		[cm] 400	
Copriferro:		[cm] 3	
Filo fisso pilastrata	Valutazione caric	hi variabili	
C Filo a sinistra	Considera il 10)0% per tutti i piani	
Filo centrale	C Considera il 90)% per tutti i piani	
C Riduzione		graduale del 10% a piano (max 50%)	
	C Riduzione sec	ondo NTC 2018 (3.1.4.	1)

Fig. 12.4 - Scheda Dati Geometrici.

12.3 Opzioni Pilastri

Per accedere alle Opzioni Solaio, cliccare sull'icona sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Solaio o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

12.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Ancoraggio diritto. Lunghezza dei ancoraggio da adottare per i ferri di attesa.
- Piega a uncino. Prolungamento oltre il semicerchio dell'uncino nelle staffe.

Opzioni Pilastri	×
Armatura Quotature	
Diametri	Ancoraggi
[mm] 14 Ø minimo armatura principale.	[cm] 80 Ancoraggio diritto.
[mm] 6 Ø minimo armatura a staffe.	[cm] 10 Piega a squadro
[cm] 5 Passo minimo delle staffe.	[cm] 5 Ancoraggio staffa
✓ Inserisci staffe nella zona trave:	
Selezionare gli elementi da computare.	OK Annulla

Fig. 12.5 - Finestra opzioni, scheda Armatura.

12.3.2 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Pilastri		×
Armatura	Quotature	
Dimensioni t	esto	
[mm] 12	Altezza del font per i titoli.	
[mm] 10	Altezza del font per le indicazioni.	
[mm] 8	Altezza del font per la quotatura dei ferri.	
	OK Annulla	

Fig. 12.6 - Finestra opzioni, scheda Quotature.

12.4 Esempio di calcolo di una pilastrata

Calcolo e verifica agli Stati Limite di un pilastro di 4 piani. Sono utilizzati calcestruzzo di classe Rck 300 e barre del tipo Feb44k.

ELABORATI GRAFICI PRODOTTI:

Fig. 12.7 - Sezioni e armature.

RELAZIONE DI CALCOLO

PILASTRI IN C.A. Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Numero dei piani		4
Quota primo piano	[cm]	400
Interpiano tipo	[cm]	330
Copriferro	[cm]	3
Coeff. di omogeneizzazione		15
Carico permanente caratteristico piano tipo (g _k)	[t]	5
Carico permanente di calcolo piano tipo (g _d)	[t]	7,42
Carico variabile caratteristico piano tipo (qk)	[t]	3
Carico variabile di calcolo piano tipo (q _d)	[t]	4
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	300
Resistenza caratteristica del cls (f _{ck})	[kg/cm ²]	249
Resistenza di calcolo del cls (α ·f _{cd})	[kg/cm ²]	132,3
Resistenza di calcolo ridotta ($\alpha \cdot f_{cd rid}$)	[kg/cm ²]	99,2

Tipo di acciaio		Fe B 44k
Tensione caratteristica di snervamento (f _{yk})	[kg/cm ²]	4300
Resistenza di calcolo dell'acciaio (f _{yd})	[kg/cm ²]	3739,1

SOLLECITAZIONI E ARMATURE NEL PILASTRO

Piano [n.]	Carico [t]	Ac [cm ²]	Af [cm ²]	Sezione [cm∙cm]	Armat.	Staffe
4	12,0	103	6,2	30x30	4ø14	ø6/21
3	24,0	206	6,2	30x30	4ø14	ø6/21
2	36,0	309	6,2	30x30	4ø14	ø6/21
1	48,2	413	6,2	30x30	4ø14	ø6/21

Verifica allo stato limite delle tensioni di esercizio

Tensione limite per comb. di carico rara	$(\sigma_{c lim} = 149,4 kg/cm^2)$
Tensione limite per comb. di carico quasi perman.	$(\sigma_{c lim} = 112,1 kg/cm^2)$

Piano [n.]	N _{rara} [t]	N _{q.perm.} [t]	σ _{c rara} [kg/cm ²]	$\sigma_{c q. perm.}$ [kg/cm ²]
- 4	- 8.37	6.32	<u>-</u> 8.4	6.4
3	16,74	12,64	16,9	12,7
2	25,11	18,96	25,3	19,1
1	33,59	25,37	33,8	25,6

COMPUTO MATERIALI

Armatura (Fe B 44 k controllato)	[kg]	94
Calcestruzzo (R _{ck} =300)	$[m^3]$	1,19
Percentuale di armatura in peso	[%]	3,16
Incidenza peso armatura sul volume cls	[kg/m ³]	78,98

Capitolo

≺ scala a soletta rampante

Il modulo scala a soletta rampante consente di progettare e verificare una scala in c.a. a soletta rampante gettata in opera. Durante l'input della geometria è possibile prevedere la presenza di sbalzi e oltre al carico uniforme, fino a 2 carichi concentrati e fino a 2 momenti concentrati.

Il programma consente inoltre di escludere la presenza delle pignatte ed ottenere così un solettone pieno.

Gli elaborati grafici, esportabili in formato dxf, prevedono i diagrammi di taglio e momento flettente, piante e sezioni quotate e la distinta delle armature.

La relazione tecnica è in formato rtf.

13.1 Generalità

Prima di iniziare il lavoro, è consigliabile accertarsi che le opzioni correnti corrispondano alle proprie esigenze anche se sono ammesse modifiche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, le opzioni relative ai carichi e alle tensioni ammissibili.

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.
- •

Metodo di calcolo e verifica			
T.A.	S.L.		
Inserimento automatico arr	mature		
Modalità Tensioni			
C Manuale			
Automatico			
– Modalità Carichi			
C Manuale			
 Automatico 			
Automatico			

13.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 13.2 - Guida grafica di aiuto all'input dei dati.

13.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici Dati Ge	ometrici Carichi
Calcestruzzo	
Classe del calcestruzzo:	C25/30 💌
Rresistenza caratteristica cubica (Rck):	[daN/cm²] 300
Resistenza di calcolo:	[daN/cm²] 141,1
Resistenza di calcolo tangenziale:	[daN/cm²] 2,98
Resistenza di calcolo a trazione:	[daN/cm²] 11,94
cciaio	
Tipo di acciaio:	B450C 💌
Resistenza caratteristica di snervamento:	[daN/cm²] 4500
Resistenza di calcolo:	[daN/cm²] 3913,04
Coefficiente di omogeneizzazione:	15

Fig. 13.3 - Scheda Dati Elastici.

13.2.2 Dati Geometrici

- Luce rampa: proiezione orizzontale della luce della rampa.
- Luce pianerottolo Sx: distanza tra l'asse dell'appoggio sinistro e l'inizio della rampa.
- Luce pianerottolo Dx: distanza tra la fine della rampa e l'asse dell'appoggio destro.
- Luce sbalzo Sx: distanza tra l'asse dell'appoggio sinistro e l'estremo dello sbalzo.
- Luce sbalzo Dx: distanza tra l'asse dell'appoggio destro e l'estremo dello sbalzo.
- Larghezza rampa.
- Dimensioni dell'appoggio di sinistra e di destra.
- Dislivello pianerottoli: proiezione verticale della luce della rampa.
- Numero di gradini. Inserendo un numero, viene automaticamente calcolata sia l'alzata che la pedata in funzione dei dati precedenti. Qualora venga assegnato il valore zero la struttura potrà essere utilizzata come solaio inclinato.
- Copriferro.
- Altezza solaio: spessore del solaio comprensivo del laterizio e della soletta.
- Solaio di tipo alleggerito: si può scegliere di adoperare le pignatte nel solaio inserendo un segno di spunto in questa voce oppure di considerare un solaio pieno senza laterizi. In caso di solaio alleggerito verranno richiesti:
 - Spessore soletta.
 - Larghezza pignatte.

In base a questi parametri verranno decisi sia l'interasse che lo spessore dei travetti.

Dati Elastici		Dati Geometrici	Carichi
Scala		Solaio	
Luce rampa:	[cm] 360	Copriferro:	[cm] 2
Luce pianerottolo Sx:	[cm] 100	Altezza solaio:	[cm] 22
Luce pianerottolo Dx:	[cm] 100	— Solaio di tipo allegg	erito
	1.00	Spessore soletta:	[cm] 4
Luce sbalzo Sx:	[cm] 0	Larghezza pignatt	e: [cm] 33
Luce sbalzo Dx:	[cm] 0	Spessore travetti:	[cm] 18,00
Larghezza rampa:	[cm] 120	Interasse travetti:	[cm] 51,00
Dislivello pianerottoli (+/-)	[cm] 210	Dimensioni travi d'appog	gio
,		Base trave Sx:	[cm] 30
Numero di gradini:	13	Altezza trave Sx:	[cm] 40
Alzata:	[cm] 16,15	Base trave Dx:	[cm] 30
Pedata:	[cm] 27,69	Altezza trave Dx:	[cm] 40

Fig. 13.4 - Scheda Dati Geometrici e Carichi.

13.2.3 Carichi

- Carico permanente: carico fisso uniformemente distribuito su tutta la luce. Questo campo risulta accessibile solo se la Modalità Carichi è impostata su *Manuale*. In alternativa viene calcolato automaticamente il peso proprio della struttura al quale viene aggiunto il peso eventuale di intonaco, massetto e pavimento.
- Carico accidentale: sovraccarico previsto dalla normativa variabile in funzione della destinazione della struttura.
- Forza conc. 1: prima forza concentrata.
- Ascissa: ascissa della prima forza concentrata da valutare sempre con riferimento all'appoggio di sinistra (se ad es. si vuole posizionare tale forza sull'estremità dello sbalzo sinistro di luce 60 cm, si dovrà indicare come ascissa il valore negativo –60).
- Forza conc. 2: seconda forza concentrata.
- Ascissa: ascissa della seconda forza concentrata.
- Momento conc. 1: primo momento concentrato.
- Ascissa: ascissa del primo momento concentrato.
- Momento conc. 2: secondo momento concentrato.
- Ascissa: ascissa del secondo momento concentrato.

Carichi fissi di tipo G1 e G2 e	carichi accidentali		Favorevole
Carico fisso strutturale sulla	rampa (61):	[daN/m²] 838,6	
Carico fisso non strutturale	sulla rampa (62):	[Kg/m²] 195,3	
Carico fisso strutturale sul p	pianerottolo (G1):	[daN/m²] 550,0	
Carico fisso non strutturale	sul pianerottolo (G2):	[Kg/m²] 154,0	
Carico accidentale (Qk1):		[daN/m²] 400	
Forza conc.1 non struttural	e (G2): [daN] 0	Ascissa: [cm] 0	
Forza conc.2 non struttural	e (G2): [daN] 0	Ascissa: [cm] 0	
Mom. conc.1 non strutturale	e (G2):daNm] 0	Ascissa:[cm] 0	
Mom. conc.2 non strutturale	e (G2):daNm] 0	Ascissa:[cm] 0	

Fig. 13.5 - Scheda Carichi.

13.3 Opzioni Scala Rampante

Per accedere alle Opzioni Scala Rampante, cliccare sull'icona sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Scala Rampante o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

13.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo armatura di ripartizione. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per l'armatura di ripartizione a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Ancoraggio diritto. Lunghezza di ancoraggio da adottare per i ferri longitudinali oltre i punti di lavoro di estremità del ferro.
- Piega estremità. Lunghezza da adottare per le estremità dei ferri diritti superiori ed inferiori e dei cavallotti secondo il modello scelto nel menu a tendina proposto.

Opzioni Scala Rampante	×
Armatura Geometria Peso Proprio Quotat	ure Vincoli
Diametri	Ancoraggi
[mm] 12 Ø minimo armatura principale.	[cm] 30 Ancoraggio diritto.
[mm] 8 Ø minimo armatura ripartizione.	[cm] 10 Piega estremità
[mm] 6 Ø minimo armatura a staffe.	L
[cm] 5 Passo minimo delle staffe.	
	OK Annulla

Fig. 13.6 - Finestra opzioni, scheda Armatura.

13.3.2 Sezione Geometria

- Luce limite inserimento travetto di ripartizione. Valore oltre il quale per la campata è previsto l'inserimento del travetto di ripartizione (non superiore a 5 m).
- Dimensione del cordolo estremità sbalzi. Larghezza del cordolo in prossimità degli estremi degli eventuali sbalzi.
- Dimensione profondità delle pignatte. Dimensione delle pignatte nella direzione parallela ai travetti.
- Numero di divisioni da elaborare. Indica il numero delle parti in cui suddividere la luce della scala e per le quali poter disporre delle caratteristiche della sollecitazione nella relazione.

Opzioni Sca	ala Rampante	2
Armatura	Geometria Peso Proprio Quotature Vincoli	
[cm] [[cm] [[cm] [300 Luce limite per l'inserimento del travetto di ripartizione. 10 Dimensione del cordolo alle estremità degli sbalzi. 25 Dimensione profondità delle pignatte. 	
11	Numero di divisioni da elaborare per ciascuna campata.	
	OK Annulla	

Fig. 13.7 - Finestra opzioni, scheda Geometria.

13.3.3 Sezione Peso Proprio

 Se si è scelto il calcolo automatico del carico permanente, questa opzione aiuta a valutare, selezionando ciascuna voce, il contributo del peso proprio dovuto all'intonaco, al massetto ed al pavimento. Per ogni voce è necessario poi inserire lo spessore ed il peso dell'unità di volume. L'ultimo campo, non editabile, indica il valore del peso proprio come risultato dei dati immessi nei campi che lo precedono.

Opzioni Scala Rampante ×				
Armatura Geometria Peso Proprio Quotature Vincoli				
Spessore Peso Specifico Peso Proprio				
✓ Intonaco: [cm] 1,5 [daN/m²] 1600 [daN/m²] 24				
✓ Massetto: [cm] 5 [daN/m²] 1800 [daN/m²] 90				
✓ Pavimento: [cm] 2 [daN/m²] 2000 [daN/m²] 40				
Tipologia del carico: O G1-strutturale • G2-non strutturale				
Selezionare gli elementi da computare. OK Annulla				

Fig. 13.8 - Finestra opzioni, scheda Peso Proprio.

13.3.4 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Scala Rampante	×
Armatura Geometria Peso Proprio Quotature Vincoli	
Dimensioni testo	
[mm] 12 Altezza del font per i titoli.	
[mm] 10 Altezza del font per le indicazioni.	
[mm] 8 Altezza del font per la quotatura dei ferri.	
OK	

Fig. 13.9 - Finestra opzioni, scheda Quotature.

13.3.5 Sezione Vincoli

 Adotta criterio di fascia per i momenti. Abilitando questa opzione verrà considerato il calcolo delle caratteristiche della sollecitazione supponendo l'ipotesi di incastro agli estremi oltre all'ipotesi di trave appoggiata. In questo modo si attribuisce un comportamento a fascia che comprende quello reale della struttura.

Fig. 13.10 - Finestra opzioni, scheda Vincoli.

13.4 Diagrammi e schemi di carico

Premendo il tasto Diagrammi della barra degli strumenti (oppure cliccando sulla voce Diagrammi del Menu Vista) si apre una finestra divisa in tre riquadri. Sulla sinistra sono rappresentati gli schemi di carico che producono le sollecitazioni massime. Nella parte alta è riprodotto il diagramma inviluppo dei momenti flettenti relativo ad un solo travetto e, al passaggio del mouse, vengono evidenziati l'ascissa misurata a partire dall'appoggio di sinistra ed il valore del momento. In basso è rappresentato il diagramma del taglio con analoghe caratteristiche descritte per il momento.

Fig. 13.11 - Finestra diagrammi e schemi di carico.

13.5 Armatura

Dopo l'immissione dei dati della struttura, all'avvio dell'elaborazione, viene richiesto di scegliere tra la predisposizione del tutto automatica delle armature necessarie e la possibilità di gestire i ferri secondo le proprie esigenze.

13.5.1 Predisposizione automatica delle armature

Le armature vengono individuate a partire dai valori massimi delle caratteristiche di sollecitazione ed assegnando ai travetti un massimo di due ferri nella parte tesa. La scelta dei diametri (al massimo due) viene eseguita a partire dal diametro minimo indicato nelle opzioni del modulo.

13.5.2 Disposizione manuale e modifica delle armature

Scegliendo di personalizzare le armature o anche decidendo di modificare quelle proposte dal programma, basta selezionare con il mouse le armature desiderate per poi trascinarle nel punto voluto e rilasciare il tasto del puntatore. Dalla finestra delle proprietà che appare a questo punto, si possono fare tutte le scelte inerenti al ferro.

13.5.3 La finestra di interfaccia delle armature

Fig. 13.12 - Finestra di interfaccia delle armature della scala a soletta rampante.

L'interfaccia permette di analizzare e/o modificare le armature e comprende:

- la finestra principale dove, oltre alla sezione longitudinale del solaio, sono disegnati i ferri con le loro quotature;
- una finestra laterale dove sono elencate le icone delle armature longitudinali;
- una finestra superiore dove è possibile visualizzare alternativamente il diagramma del momento e del taglio con sovrapposizione dei rispettivi valori resistenti;
- una finestra nell'angolo superiore sinistro dove è visibile, in modo interattivo, la sezione, corredata di quote e posizione dei ferri, relativa alla posizione corrente del mouse nella finestra principale.

13.5.4 La barra delle armature

Sulla barra delle armature della finestra principale si trovano i tasti che permettono la gestione di alcune proprietà e funzioni dei ferri introdotti.

- Carica armatura ultimo salvataggio: se esistente, permette di caricare l'armatura precedentemente salvata eliminando quella corrente.
- 📓 Salva armatura corrente: salva l'armatura disposta previo salvataggio della struttura.
- 🖻 Proprietà: visualizza la finestra Proprietà del ferro selezionato.
- Gain Sinestra grafici → Momento resistente: visualizza nella finestra superiore il diagramma del momento flettente e aggiorna quello resistente.
- Gasting and the second second
- Aggiorna finestra grafici: aggiorna il diagramma corrente della finestra superiore.
- Allinea verticalmente: estende le estremità del ferro selezionato fino agli assi degli appoggi della campata corrente.
- 🛃 Allinea alla rampa: riposiziona il ferro selezionato parallelamente all'asse della rampa.
- In. Aumenta numero ferri: aumenta il numero di ferri rappresentato dal ferro selezionato.
- Riduci numero ferri: riduce il numero di ferri rappresentato dal ferro selezionato.
- Aumenta diametro: aumenta il diametro del ferro selezionato.
- Riduci diametro: riduce il diametro del ferro selezionato.
- Elimina selezione: elimina il ferro selezionato.
- 🖾 Elimina longitudinali: permette di eliminare tutti i ferri longitudinali presenti.
- Aggiorna calcoli: riesegue le verifiche necessarie dopo una variazione delle armature.
- Snap 1 permette, se attivato, spostamenti del mouse su una griglia con passo indicato a fianco.

13.5.5 Funzioni sulla barra di stato

Sulla barra di stato, nella parte bassa dello schermo, sono presenti un campo che indica lo stato attuale dello SNAP (ON/OFF) ed un campo che indica lo stato attuale della funzione ORTHO (ON/OFF). Lo stato di queste funzioni può essere cambiato facendo un doppio clic sul campo medesimo.

Con la funzione ORTHO si limita il puntatore a spostamenti solo orizzontali o verticali. Tale funzione si rende utile per spostare un ferro senza perdere l'allineamento oppure per ottenere uno stiramento del ferro lungo il suo asse.

13.5.6 Finestra proprietà dei ferri longitudinali

La visualizzazione della finestra delle proprietà di un ferro si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un ferro già introdotto si può procedere in due modi:

- selezionare un ferro e premere il tasto Proprietà sulla barra delle armature;

- posizionare il puntatore su un ferro, premere il tasto destro del mouse e selezionare la voce di menù Proprietà.

Ferro Longitudinale ×
Posizione 6 - Ferro inferiore Numero di ferri 6 Ø 12
L principale
Lunghezza di Ancoraggio Sinistra Destra Image: in centimetri 0 35,723427- Image: in numero di diametri Image: innumero di diametri Image: innumero di diametri
Estremità Geometria Quotatura Sinistra Destra ▲x 0 cm 10 cm ▲y 10 cm 0 cm
(OK) Annulla

Fig. 13.15 - Finestra proprietà delle armature longitudinali.

La finestra delle proprietà consente di configurare o modificare le caratteristiche di un ferro.

- Posizione e denominazione del ferro: indicano la posizione che il ferro occupa nella lista dei ferri e la tipologia del ferro selezionato.
- Numero dei ferri e diametro: il diametro ed il numero di ferri rappresentati da quello selezionato.
- Lunghezza principale e riferimento: da due liste a discesa si possono selezionare la lunghezza principale espressa in termini di campata ed il riferimento a partire dal quale va valutata la lunghezza stessa (es.: se le scelte fatte fossero 1+1/4 di campata e da sinistra, avremmo, partendo da sinistra, una lunghezza principale pari alla luce della campata corrente più un quarto della luce della campata successiva). In fase di inserimento di un nuovo ferro, viene proposta una lunghezza iniziale pari alla luce della campata corrente e che potrà essere modificata sia operando una scelta diversa dalla lista e sia intervenendo sulla scheda Geometria descritta in seguito. Nel caso in cui la lunghezza principale venga assegnata tramite la scheda Geometria, i due campi predisposti risulteranno vuoti.

- Lunghezza di ancoraggio: è la lunghezza in aggiunta a quella principale e della quale non se ne tiene conto nelle verifiche e nella definizione dei diagrammi resistenti. questo parametro può essere inserito in duplice modo:
 - esprimendolo in centimetri;
 - esprimendolo in numero di diametri.
- Scheda Estremità. In questa scheda vanno inseriti il tipo di estremità sia destra che sinistra da selezionare da un elenco a discesa ed i valori dei parametri.

Fig. 13.16 - Tipi di estremità per le armature longitudinali.

 Scheda Geometria. In questa sezione è possibile modificare il punto di inserimento del ferro (estremo di sinistra) attraverso le coordinate X e Y e la geometria mediante una tabella dove il ferro viene suddiviso in singoli tratti ad ogni deviazione lungo il suo sviluppo. Per ogni tratto si possono modificare la lunghezza assoluta del tratto stesso e/o le proiezioni sugli assi x e y mentre la colonna relativa all'inclinazione del tratto è solo di tipo informativo. Il tratto interessato dalla modifica viene evidenziato in rosso.

E	Estremità Geometria Quotatura			Quotatura	
Coord. origine [cm]: X 67 Y 455					
Tratto	L [cm]	Dx [cm]	Dy [cm]	Angolo (*)	
1	118,407	118,407	0,000	0,000000	
2	416,773	360,000	-210,000	30,256437	

Fig. 13.17 - Scheda di modifica della geometria del ferro longitudinale.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del ferro nonché decidere se mostrare:
 - la scritta Pos. seguita da un numero identificativo;
 - la scritta inf, sup, par ad indicare la posizione del tratto (inferiore, superiore o intermedia per ferri di parete);
 - la lunghezza totale del ferro comprendente le lunghezze di ancoraggio e le estremità;
 - il numero dei ferri ed il diametro;
 - le quotature parziali dei singoli tratti.

Estremità	Geometria	Quotatura
🔽 Mostra la scritta P	os.x 🔽 Mostra ind	icatore inf/sup/par
Font: Colore:	7, Arial	
🔽 Mostra lunghezza	totale 🔽 Mostra nu	mero ferri e diametro
Font:	9, Arial	
✓ Mostra quotature Font:	parziali 7, Arial	

Fig. 13.18 - Scheda di modifica delle quotature del ferro longitudinale.

13.5.7 Modificare senza la finestra proprietà

Alcune caratteristiche del ferro possono essere modificate senza l'ausilio della finestra proprietà.

- Punto origine: selezionare il ferro e tenendo premuto il tasto sinistro del mouse trascinare il ferro nel punto voluto. In alternativa, dopo la selezione del ferro, si possono utilizzare i tasti direzionali della tastiera. In entrambi i casi il movimento avviene lungo una griglia definita con la funzione SNAP e può essere vincolato dalla funzione ORTHO.
- Numero di ferri: selezionare il ferro con il mouse e, sulla barra delle armature, premere il tasto
 una sola volta per aumentare il numero di ferri di una unità, invece il tasto
 per ridurne il numero. Lo stesso risultato si ha premendo il tasto destro del mouse quando è posizionato sopra al ferro e scegliere Aumenta numero ferri oppure Riduce numero ferri dal menù che appare.
- Diametro: selezionare il ferro e, sulla barra delle armature, premere il tasto per aumentare il diametro ed il tasto per diminuirlo. Anche in questo caso si può usare il tasto destro del mouse e quindi selezionare Aumenta diametro ferro oppure Riduce diametro ferro per ottenere lo stesso effetto.
- Allinea agli appoggi: per riposizionare un ferro in modo da estendere gli estremi fino agli assi degli appoggi della campata corrente, premere il tasto Sulla barra delle armature oppure scegliere Allinea agli appoggi dal menu che appare premendo il tasto destro.
- Centra sull'appoggio: per riposizionare un ferro in modo da risultare centrato sull'appoggio più vicino al puntatore, premere il tasto Sulla barra delle armature oppure scegliere Centra sull'appoggio dal menu che appare premendo il tasto destro.
- Elimina selezione: elimina il ferro selezionato se viene premuto il tasto \times sulla barra delle armature oppure selezionando Elimina ferro dal menù tasto destro del mouse.
- Elimina longitudinali: elimina in modo permanente tutti i ferri quando viene premuto il tasto
 sulla barra delle armature.
- Modifica geometria: con il solo uso del mouse e con l'aiuto delle funzioni SNAP e ORTHO si può modificare nel modo voluto la lunghezza di un singolo tratto del ferro. Al momento della selezione, sugli estremi di ogni singolo tratto del ferro appaiono delle maniglie di colore grigio; facendo doppio clic su una maniglia, questa assume il colore rosso. A questo punto cliccando su una maniglia diversa da quella selezionata e trascinando il mouse col tasto sinistro premuto, l'effetto sarà quello di uno stiramento del solo tratto attiguo alla maniglia rossa e dalla parte del puntatore.

•

13.6 Esempio di calcolo di scala a soletta rampante

Calcolo e verifica agli Stati Limite di una scala a soletta rampante in c.a. Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb38k.

ELABORATI GRAFICI PRODOTTI:

Fig. 13.19 - Diagrammi di momento e taglio.

Fig. 13.20 - Pianta e carpenteria.

Fig. 13.21 - Disposizione armature.

Fig. 13.22 - Sezione longitudinale e trasversale.

RELAZIONE DI CALCOLO

SCALA A SOLETTA RAMPANTE IN C.A. Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Larghezza Rampa

[cm]

120

194

[cm]	210
[cm]	16,15
[cm]	27,69
[cm]	51
[cm]	18
[cm]	4
[cm]	2
	15
[kg/cm ²]	250
[kg/cm ²]	207,5
[kg/cm ²]	110,2
	Fe B38k
[kg/cm ²]	3750
[kg/cm ²]	3260,9
	[cm] [cm] [cm] [cm] [cm] [cm] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²]

Geometria	Luce [cm]	Altezza [cm]	Inerzia [m ⁴]
Pianerottolo sin	80	20	0,000184
Rampa	360	20	0,000184
Pianerottolo des	140	20	0,000184
Sbalzo destro	60	20	0,000184

VALORI CARATTERISTICI E DI CALCOLO DELLE AZIONI

Carichi distribuiti	G _{k perm.} [kg/m ²]	$Q_{k var.}$ [kg/m ²]	G _{d perm.} [kg/m ²]	Q _{d var.} [kg/m ²]
Pianerottolo sin	367	300	514	450
Rampa	644	300	902	450
Pianerottolo des	367	300	514	450
Sbalzo destro	367	300	514	450
Forze concentrate	Ascissa [cm]	F _k [kg]	F _d [kg]	
Pianerottolo sin	60	800	1120	

CARATTERISTICHE DELLE SOLLECITAZIONI (per un travetto)

Vincolo: appoggio agli estremi

Sezione [cm]	Momento [kg·m]	Taglio [kg]
0	0,0	2230,2
97	1753,0	1243,6
193	2629,2	581,8
290	2869,1	-87,0
387	2460,4	-755,8
483	1435,5	-1332,6
580	-88,5	-1809,6

Vincolo: incastro agli estremi

Sezione	Momento	Taglio
[cm]	[kg·m]	[kg]
0	0,0	0,0
15	-1863,7	2213,9
97	-392,5	1301,1
193	538,8	639,2
290	834,5	-29,5
387	481,5	-698,3
483	-488,2	-1275,1
565	-1699,2	-1678,4
580	0,0	0,0

MASSIME SOLLECITAZIONI E ARMATURE (per un travetto)

Verifiche allo S.L.U.		
Momento massimo positivo (x=277)	[kg·m]	2874,6
Armatura massima inferiore	[cm ²]	6,0
Asse neutro (x/d = 0,19 < 0,45)	[cm]	3,6
Momento resistente ultimo (MRd)	[kg∙m]	3238,0
Momento massimo negativo (x=15)	[kg∙m]	-1863,7
Armatura massima superiore	[cm ²]	4,0
Asse neutro (x/d = 0,21 < 0,45)	[cm]	3,4
Momento resistente ultimo (MRd)	[kg∙m]	2133,1
Taglio massimo (x=0)	[kg]	2230,2
Resistenza a taglio del solo cls (VRd1)	[kg]	1882,5
Resistenza del cls con armatura a taglio (VRd2)	[kg]	10714,8
Resistenza sezione con armatura a taglio (VRd3)	[kg]	3291,0
Armatura di ripartizione soletta		ø8/20 cm

Verifiche SLE per comb. di carico rara e quasi permanente

Momento massimo positivo (per comb. rara) Tensione nel cls (comb. rara) (σ_c) Tensione nel ferro (comb. rara) (σ_s) Momento massimo (per comb. quasi perm.) Tensione nel cls (comb. quasi perm.) (σ_c) Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg·m] [kg/cm ²] [kg·m] [kg·m] [kg/cm ²] [kg/cm ²]	1464,7 52,1 < 124,5 1520,8 < 2625 1249,1 44,4 < 93,4 1296,9 < 1875
Momento di fessurazione (comb. rara) (M _f) Ampiezza delle fessure (W _k) Momento massimo negativo (per comb. rara) Tensione nel cls (comb. rara) (σ_c) Tensione nel ferro (comb. rara) (σ_s) Momento massimo (per comb. quasi perm.) Tensione nel cls (comb. quasi perm.) (σ_c) Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg·m] [mm] [kg·m] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²]	199,1 < 1464,7 0,06 < 0,3 949,6 36,2 < 124,5 1450,3 < 2625 809,8 30,9 < 93,4 1236,8 < 1875

Momento di fessurazione (comb. rara) (M _f)	[kg∙m]	304,0 < 949,6
Ampiezza delle fessure (W _k)	[mm]	0,06 < 0,3

Verifica allo stato limite di deformazione

Abbassamento max (per comb. rara)	[mm]
Abbassamento max (per comb. quasi perm.)	[mm]

PROSPETTO ARMATURE (per un travetto)

				a	
	A	A	Monconi	Inferiori	Superiori
	Arm. Inf.	Arm. sup.	Appag 1	1 a 1 6	
Campata	2016	2016	Appog. 1	1010	
Campata	5010	2010	Appog 2	1016	
Shalzo sin			Appog. 2	1010	
508120 5111.					
Shalzo des	1ø16	1ø16			
Sbaizo des.	1010	1010			

COMPUTO MATERIALI

Lista Ferri Longitudinali per travetto

19,0

16,2

Pos.	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
1	16	619	1	619	9,77
2	16	178	1	178	2,81
3	16	245	1	245	3,87
4	16	700	2	1400	22,10
5	16	417	1	417	6,58
6	16	565	1	565	8,92

Totali Longitudinali per travetto

	Ltot [m]	Massa [kg]
Totale Ferri Ø16	34,24	54,05

Lista Ripartitori e Staffe

		1			
Riferimento	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
cordolo sbalzo des.	10	120	2	240	1,48
travetto ripartizione	10	120	4	480	2,96
staffe trav. ripart.	8	54	6	324	1,28

Totali Ripartitori e Staffe

	Ltot [m]	Massa [kg]
Totale Ø8	2,4	1,48
Totale Ø10	8,04	4,24

- Armatura (Fe B 38 k controllato) Calcestruzzo (R _{ck} =250) Laterizi (H = 16)	[kg] [m ³] [n.]	134 1,59 46
Percentuale di armatura in peso	[%]	3,34
Incidenza peso armatura sul volume cls	[kg/m ³]	83,47

Capitolo

🛃 scala con trave a ginocchio

Il modulo Scala Ginocchio consente di progettare e verificare una scala in c.a. con trave a ginocchio. Durante l'input dei dati è possibile:

- prevedere la presenza di sbalzi;
- tenere conto dello sfalsamento delle rampe;
- considerare i pianerottoli in cls pieno oppure alleggeriti;
- tenere conto in modo opportuno dei carichi inclinati;
- prevedere o meno l'influenza del solaio di piano adiacente alla rampa;
- prevedere la presenza fino a 2 forze e fino a 2 momenti concentrati.

Gli elaborati grafici, esportabili in formato dxf, prevedono i diagrammi di taglio e momento flettente, piante e sezioni quotate e la distinta delle armature.

La relazione tecnica è in formato rtf.

14.1 Generalità

Prima di iniziare il lavoro, è consigliabile accertarsi che le opzioni correnti corrispondano alle proprie esigenze anche se sono ammesse modifiche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, le opzioni relative ai carichi e alle tensioni ammissibili.

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.

⊢ Metodo di calcolo e ver	ifica
T.A.	S.L.
✓ Inserimento automatic	co armature
Modalità Tensioni	
C Manuale	
Automatico	
– Modalità Carichi	
C Manuale	
Automatico	

Fig. 14.1 - Scelta modalità di calcolo.

14.2 Caratteristiche di input e output dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo.

Fig. 14.2 - Guida grafica di aiuto all'input dei dati.

14.2.1 Dati Elastici

In questa cartella vengono richieste le caratteristiche dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.

Inoltre, se l'opzione Modalità Tensioni non è impostata su Automatico, verranno richiesti:

- La tensione ammissibile del calcestruzzo.
- La tensione ammissibile del ferro.
- La tensione tangenziale minima del calcestruzzo al disotto della quale non è necessario armare a taglio.
- La tensione tangenziale limite del calcestruzzo che non deve essere superata nella verifica a solo taglio.

• La tensione tangenziale limite del calcestruzzo che non deve essere superata qualora sia presente taglio e torsione.

Dati Elastici	Geometria 👔	Carichi
Calcestruzzo		
Classe del calcestruzzo:	C25/3) 🔹
Rresistenza caratteristica cubica (Rck)]: [daN/cm²]	300
Resistenza di calcolo:	[daN/cm²]	141,1
Resistenza di calcolo tangenziale:	[daN/cm²]	2,98
Resistenza di calcolo a trazione:	[daN/cm²]	11,94
Acciaio		
Tipo di acciaio:	B450C	•
Resistenza caratteristica di snervamen	to: [daN/cm²]	4500
Resistenza di calcolo:	[daN/cm²]	3913,04
Coefficiente di omogeneizzazione:		11,94

Fig. 14.3 - Scheda Dati Elastici.

14.2.2 Geometria

Dati Elastici		Geometria	Car	ichi
Geometria Scala		- Pianerottolo		
Luce rampa:	[cm] 300	 Altezza pianero 	ottolo: [cm]	16,71
Luce pianerottolo Sx:	[cm] 120	 C Sfalsamento ra 	mpe: [cm]	11,41
Luce pianerottolo Dx:	[cm] 100		leggerito	
Luce sbalzo Sx:	[cm] 80	- Spessore so	letta: [cm]	4
Luce sbalzo Dx:	[cm] 80	– Larghezza p	ignatte: [cm]	40
Larghezza rampa:	[cm] 120	- Spessore tra	ivetti: [cm]	10,00
Larghezza trombino:	[cm] 10	Interasse tra	avetti: [cm]	50,00
Larghezza pilastro Sx:	[cm] 50	Trave a ginocchio		
Larghezza pilastro Dx:	[cm] 50	Base: [cm] 30	Altezza: [c	sm] 60
Dislivello pianerottoli (+/-)	[cm] 160	Trave di testata de	estra	
Soletta rampa:	[cm] 5	Base: [cm] 30	Altezza: [c	rm] 50
Numero dei gradini:	10	Posizione in as	se pilastro	
Alzata: [cm] 16,00 Pe	data: [cm] 30,00	Trave di testata si	nistra	
Copriferro:	[cm] 3	Base: [cm] 30	Altezza: [d se pilastro	:m] 50

Fig. 14.4 - Scheda Geometria.

14.2.2.1 Geometria Scala

• Luce rampa: proiezione orizzontale della luce della rampa (tratto inclinato).

- Luce pianerottolo Sx: distanza tra l'asse dell'appoggio sinistro e l'inizio della rampa.
- Luce pianerottolo Dx: distanza tra la fine della rampa e l'asse dell'appoggio destro.
- Luce sbalzo Sx: distanza tra l'asse dell'appoggio sinistro e l'estremo dello sbalzo.
- Luce sbalzo Dx: distanza tra l'asse dell'appoggio destro e l'estremo dello sbalzo.
- Larghezza rampa: larghezza utile della rampa.
- Larghezza trombino: larghezza intercapedine tra le rampe
- Larghezza pilastro Sx.
- Larghezza pilastro Dx.
- Dislivello pianerottoli: proiezione verticale della luce della rampa. Immettendo un valore negativo si può scambiare la posizione reciproca dei pianerottoli ottenendo in questo modo anche la possibilità di avere gli esecutivi della seconda rampa.
- Soletta rampa: spessore della soletta che raccorda tutti i gradini ed utile per l'assorbimento delle azioni parallele alla rampa stessa.
- Numero di gradini. Inserendo un numero, viene automaticamente calcolata sia l'alzata che la pedata in funzione dei dati precedenti.
- Alzata: valore calcolato automaticamente e non editabile.
- Pedata: valore calcolato automaticamente e non editabile.
- Copriferro.

14.2.2.2 Geometria Pianerottolo

- Altezza pianerottolo: spessore del solaio comprensivo del laterizio e della soletta. Questo campo è editabile solo se preventivamente abilitato con un click sulla relativa opzione. L'inserimento di questo dato provoca, automaticamente, la determinazione dello sfalsamento il cui campo risulta non editabile in questo caso.
- Sfalsamento rampe: sfalsamento che si vuole assegnare tra le due rampe. Questo campo è editabile solo se preventivamente abilitato con un click sulla relativa opzione. L'inserimento di questo dato provoca, automaticamente, la determinazione dello spessore del pianerottolo il cui campo risulta non editabile in questo caso.
- Pianerottolo alleggerito: si può scegliere di adoperare le pignatte nei pianerottoli inserendo un segno di spunto in corrispondenza di questa voce oppure, in alternativa, di considerare i pianerottoli in cls pieno. In caso di pianerottoli alleggeriti con laterizi verranno richiesti inoltre:
 - Spessore soletta.
 - Larghezza pignatte: (campo solo informativo e non editabile)
 - Spessore travetti.
 - Interasse travetti.

In base a questi parametri verranno decisi sia l'interasse che lo spessore dei travetti.

14.2.2.3 Trave a Ginocchio

- Base: base della sezione della trave a ginocchio.
- Altezza: altezza della sezione della trave a ginocchio.

14.2.2.4 Trave di testata destra

- Base: base della sezione della trave di testata in corrispondenza del pianerottolo di arrivo.
- Altezza: altezza della sezione della trave di testata in corrispondenza del pianerottolo di arrivo.
- Posizione in asse pilastro: introducendo un segno di spunto nella casella corrispondente si posiziona la trave di testata in corrispondenza dei pilastri. In alternativa, la trave di testata andrà ad occupare l'estremità dell'eventuale sbalzo.

14.2.2.5 Trave di testata sinistra

- Base: base della sezione della trave di testata in corrispondenza del pianerottolo di riposo.
- Altezza: altezza della sezione della trave di testata in corrispondenza del pianerottolo di riposo.
- Posizione in asse pilastro: introducendo un segno di spunto nella casella corrispondente si posiziona la trave di testata in corrispondenza dei pilastri. In alternativa, la trave di testata andrà ad occupare l'estremità dell'eventuale sbalzo.

14.2.3 Carichi

Dati Elastici	Geometria	Carichi
Azioni sulla scala	Favor	Azioni sulla trave a ginocchio
Carico fisso strutturale rampa:	[daN/m²] 458,5	-Sbalzo e pianerottolo di riposo (sx)
Carico fisso non strutturale rampa	: [daN/m²] 0,0	G1 fisso strutt.: [daN/m] 836
Carico fisso strutt. pianerottolo:	[daN/m²] 308,6	62 fisso pop strutt :[daN/m] 180
Carico fisso non strutt. pianerotto	lo: [daN/m²] 0,0	
Carico variabile:	[daN/m²] 400	Uk1 variabile: [daN/m] 500
Forza conc.1: [daN] 0 As	scissa F1: [cm] 0	-Tratto rampa
(Confluenza della trave di piano con la tr	rave a ginocchio)	G1 fisso strutt.: [daN/m] 1060
Forza conc.2: [daN] 0 As	scissa F2: [cm] 0	62 first pop strutt (dahl/m) 224
Mom. conc.1: [daNm] 0 As	scissa M1: [cm] 0 📃	
Mom. conc.2: [daNm] 0 As	cissa M2: [cm] 0	Qk1 variabile: [daN/m] 480
Azioni sul solaio adiacente all	a scala	-Sbalzo e pianerottolo di arrivo (dx)
Luce solaio ortogonale rampa:	[cm] 200	G1 fisso strutt.: [daN/m] 836
Carico perman. solaio:	[daN/m²] 200	G2 fisso non strutt.:[daN/m] 468
Carico variabile solaio:	[daN/m²] 400	Qk1 variabile: [daN/m] 500
Peso trave di piano + Tompagno	[daN/m] 630	

Fig. 14.5 - Scheda Carichi.

14.2.3.1 Scala

- Carico fisso rampa: carico permanente uniformemente distribuito sulla rampa. Questo campo risulta editabile solo se la Modalità Carichi è impostata su *Manuale*. In alternativa viene calcolato automaticamente il peso proprio della struttura al quale viene aggiunto il peso eventuale di intonaco, massetto, pavimento e tompagno.
- Carico fisso pianerottolo: carico permanente uniformemente distribuito sui pianerottoli. Questo campo risulta editabile solo se la Modalità Carichi è impostata su *Manuale*. In

alternativa viene calcolato automaticamente il peso proprio della struttura al quale viene aggiunto il peso eventuale di intonaco, massetto, pavimento e tompagno.

- Carico accidentale: sovraccarico previsto dalla normativa variabile in funzione della destinazione della struttura.
- Forza conc. 1: prima eventuale forza concentrata. Se la Modalità Carichi è su automatico ed il riquadro Solaio adiacente è selezionato, F1 è la forza trasmessa dalla trave di piano valutata, a vantaggio di statica, come 1/2 del carico della trave di piano.
- Ascissa F1: ascissa della prima forza concentrata da valutare sempre con riferimento all'appoggio di sinistra (se ad es. si vuole posizionare tale forza sull'estremità dello sbalzo sinistro di luce 60 cm, si dovrà indicare come ascissa il valore negativo –60).
- Forza conc. 2: seconda eventuale forza concentrata.
- Ascissa F2: ascissa della seconda forza concentrata valutata rispetto all'appoggio di sinistra.
- Momento conc. 1: primo eventuale momento concentrato.
- Ascissa M1: ascissa del primo momento concentrato valutata rispetto all'appoggio di sinistra.
- Momento conc. 2: secondo eventuale momento concentrato.
- Ascissa M2: ascissa del secondo momento concentrato valutata rispetto all'appoggio di sinistra.

14.2.3.2 Solaio adiacente alla scala

- Solaio adiacente alla scala: introducendo un segno di spunto nella casella corrispondente si abilita la possibilità di computare il carico trasmesso dal solaio adiacente al pianerottolo di arrivo e che scarica sulla trave di piano. Verranno così richiesti:
 - Luce solaio ortogonale rampa: luce del solaio che scarica sulla trave di piano. Se sono presenti i solai sia sul lato destro che sul lato sinistro delle rampe, introdurre la luce maggiore tra le due.
 - Carico totale solaio: carico complessivo (permanente + accidentale) del solaio che scarica sulla trave di piano.
 - Peso trave di piano + Tompagno: campo non editabile. Rappresenta il peso proprio della trave di piano assunta di dimensioni pari a quelle della trave a ginocchio ed il peso della muratura del vano scala. Per intervenire sul valore proposto si può modificare il valore del peso proprio della muratura andando in Opzioni Scala Ginocchio Peso Proprio Incidenza Tompagno.

14.2.3.3 Trave a ginocchio

Riquadro non editabile. In questi campi vengono mostrati i risultati dei carichi agenti sulla trave a ginocchio che scaturiscono dai dati precedentemente immessi. Essi si riferiscono ai carichi fissi e accidentali nell'ordine: al tratto orizzontale di sinistra (pianerottolo di riposo); al tratto inclinato (rampa); al tratto orizzontale di destra (pianerottolo di arrivo).

14.3 Opzioni Scala Ginocchio

Per accedere alle Opzioni Scala Ginocchio, cliccare sull'icona sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Scala Ginocchio o ancora premendo il tasto visualizzato nel campo Carico Permanente in modalità automatico.

14.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo ferri di parete. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per eventuali ferri di parete a partire da quello indicato.
- Diametro minimo armatura di ripartizione. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per l'armatura di ripartizione a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm).
- Ancoraggio longitudinale. Lunghezza di ancoraggio da adottare per i ferri diritti superiori ed inferiori e per i cavallotti.
- Piega estremità. Lunghezza da adottare per le estremità dei ferri diritti superiori ed inferiori e dei cavallotti secondo il modello scelto nel menu a tendina proposto.
- Ancoraggio staffa. Lunghezza di ancoraggio delle estremità delle staffe.
- Taglio affidato ai ferri di parete. Percentuale del taglio da affidare ai ferri di parete con valore limite pari al 50%.
- Taglio affidato ai sagomati. Percentuale del taglio affidato a ferri sagomati con valore limite pari al 40%.

Opzioni Sca	ala Ginocchio	×
Armatura	Geometria Peso Proprio	Quotature Vincoli
Diametri		Ancoraggi
[mm] 14	Ø min. armatura principale	[cm] 20 Ancoraggio longitudinale
[mm] 14	Ø min. armatura di parete	[cm] 10 Piega estremità 💶 💌
[mm] 10	Ø min. armat. ripartizione	[cm] 10 Ancoraggio staffa
[mm] 10	Ø min. armatura a staffe	[%] 50 Taglio affidato ai ferri di parete
[cm] 7	Passo minimo delle staffe	[%] 40 Taglio affidato ai sagomati
		(Annulla

Fig. 14.6 - Finestra opzioni scala a ginocchio, scheda Armatura.

14.3.2 Sezione Geometria

- Dimensione profondità delle pignatte. Dimensione delle pignatte nella direzione parallela ai travetti.
- Numero di divisioni da elaborare. Indica il numero delle parti in cui suddividere la luce della scala e per le quali poter disporre delle caratteristiche della sollecitazione nella relazione.

Opzioni Sc	ala Ginocchi	o	×
Armatura	Geometria	Peso Proprio Quotature Vincoli	
[cm] [25 Dim 10 Nun	ensione profondità delle pignatte. nero di divisioni da elaborare per ciascuna campata.	
		OK Annulla	

Fig. 14.7 - Finestra opzioni, scheda Geometria.

14.3.3 Sezione Peso Proprio

- Se si è scelto il calcolo automatico del carico permanente, questa opzione aiuta a valutare, selezionando ciascuna voce, il contributo del peso proprio dovuto all'Intonaco, al Massetto ed al Rivestimento. Per ogni voce è necessario poi inserire lo spessore ed il peso dell'unità di volume. L'ultimo campo, non editabile, indica il valore del peso proprio come risultato dei dati immessi nei campi che lo precedono.
- Incidenza Tompagno. Spuntando questa voce si abilita l'inserimento del sovraccarico dovuto alla presenza della muratura perimetrale del vano scala. Viene richiesto il peso specifico della muratura.

Opzioni Scala Ginocchio ×
Armatura Geometria Peso Proprio Quotature Vincoli
Spessore Peso Specifico Peso Proprio Intonaco: [cm] 2 [daN/m²] 1500 [daN/m²] 30
Massetto: [cm] 5 [daN/m²] 1600 [daN/m²] 80
✓ Rivestimento: [cm] 2 [daN/m²] 2700 [daN/m²] 54
Tipologia del carico: 📀 G1-strutturale C G2-non strutturale
✓ Incidenza Tompagno (G2) Peso Specifico [daN/m²] 600
Selezionare gli elementi da computare. OK Annulla

Fig. 14.8 - Finestra opzioni, scheda Peso Proprio.

14.3.4 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Dimension	i testo	_
[mm] 14	Altezza del font per i titoli.	
[mm] 10	Altezza del font per le indicazioni.	
[mm] 8	Altezza del font per quotatura ferri.	

Fig. 14.9 - Finestra opzioni, scheda Quotature.

14.3.5 Sezione Vincoli

- Adotta criterio di fascia per i momenti flettenti. Abilitando questa opzione verrà considerato il calcolo delle caratteristiche della sollecitazione supponendo l'ipotesi di incastro agli estremi oltre all'ipotesi di trave appoggiata. In questo modo si attribuisce un comportamento a fascia che comprende quello reale della struttura.
- Adotta criterio di fascia per i momenti torcenti. Attivando questa opzione, verranno considerate le sollecitazioni torcenti prodotte dai due schemi limite di comportamento: con pianerottoli infinitamente flessibili e infinitamente rigidi rispettivamente. In alternativa, le sollecitazioni torcenti saranno individuate attraverso la mediazione dei valori relativi agli schemi limite sopra descritti.

Opzioni Scala Ginocchio	×
Armatura Geometria Peso Proprio Quotature Vincoli	
Adotta criterio di fascia per i momenti flettenti Le sollecitazioni flettenti verranno ricercate oltre che per la trave appoggiata agli estremi, anche per la trave con gli estremi incastrati.	
Adotta criterio di fascia per i momenti torcenti Attivando questa opzione, verranno considerate le sollecitazioni torcenti prodotte dai due schemi limite di comportamento: con pianerottoli infinitamente flessibili e infinitamente rigidi. In alternativa, le sollecitazioni torcenti saranno individuate attraverso la mediazione dei valori relativi agli schemi limite.	
OK Annulla	

Fig. 14.10 - Finestra opzioni, scheda Vincoli.

14.4 Diagrammi e schemi di carico

Premendo il tasto Diagrammi della barra degli strumenti (oppure facendo clic sulla voce Diagrammi del Menu Vista) si apre una finestra divisa in tre riquadri. Sulla sinistra sono rappresentati gli schemi di carico che producono le sollecitazioni massime. Nella parte alta è riprodotto il diagramma dei momenti flettenti e in basso è rappresentato quello del taglio. Al passaggio del mouse vengono evidenziati l'ascissa misurata a partire dall'appoggio di sinistra ed il valore della caratteristica della sollecitazione relativa.

Fig. 14.11 - Finestra diagrammi e schemi di carico.

14.5 Armatura

Dopo l'immissione dei dati della struttura, all'avvio dell'elaborazione, viene richiesto di scegliere tra la predisposizione del tutto automatica delle armature necessarie e la possibilità di gestire i ferri secondo le proprie esigenze.

14.5.1 La finestra di interfaccia delle armature

Fig. 14.12 - Finestra di interfaccia delle armature della trave a ginocchio.

L'interfaccia permette di analizzare e/o modificare le armature e comprende:

- la finestra principale dove, oltre alla sezione longitudinale della trave, sono disegnati i ferri con le loro quotature;
- tre finestre laterali dalle quali si selezionano i ferri longitudinali, i ferri di parete e le staffe da inserire nella trave;
- una finestra superiore dove, ad ogni clic del mouse, si alternano le visualizzazioni della distinta staffe, del diagramma del momento e del taglio con sovrapposizione dei rispettivi valori resistenti;
- una finestra nell'angolo superiore sinistro dove è visibile, in modo interattivo, la sezione della trave con quote e posizione dei ferri, relativa alla posizione corrente del mouse nella finestra principale.

14.5.2 Predisposizione automatica delle armature

In fase di elaborazione dei dati introdotti per la trave, rispondere affermativamente alla richiesta di scegliere il tipo di inserimento automatico per le armature. Le armature vengono individuate a partire dai valori massimi delle caratteristiche di sollecitazione. La scelta dei diametri (al massimo due) viene eseguita a partire dal diametro minimo indicato nelle opzioni del modulo.

14.5.3 Disposizione manuale e modifica delle armature

Scegliendo di personalizzare le armature basta selezionare con il tasto sinistro del mouse le armature desiderate, trascinarle nel punto voluto e rilasciare il tasto del puntatore. Dalla finestra delle proprietà che appare a questo punto, si possono effettuare tutte le scelte inerenti al ferro.

- **Introdurre un ferro longitudinale.** Nella finestra Armature Longitudinali sono disponibili 7 tipi di ferro longitudinale che è possibile inserire nella trave. Ogni tipo di ferro è rappresentato da un'icona che lascia intendere quale sia la sua morfologia e la posizione che prenderà all'interno della trave. Sono disponibili due ferri dritti (inferiore e superiore), tre piegati e due sagomati a molla per gli sbalzi.
- **Introdurre un ferro di parete.** Nella finestra Ferri di Parete è raffigurata un'icona con la quale si possono inserire nella trave i ferri di parete utili per assorbire parte del taglio
- **Introdurre un blocco di staffe.** Nella finestra Staffe si hanno a disposizione 4 tipologie di icone il cui scopo è solo quello di migliorare e velocizzare l'inserimento delle staffe.
 - Disposizione differenziata agli estremi: questo tipologia consente di posizionare contemporaneamente tre blocchi di staffe, due in prossimità degli appoggi ed uno centrale in modo da poterne differenziare il passo e, allo stesso tempo, possano risultare contigui.
 - Disposizione uniforme: con questa scelta si ottiene un solo blocco uniforme che occupa l'intera campata.

Dopo aver effettuato la scelta desiderata e trascinato il mouse in corrispondenza della campata voluta, appare la finestra proprietà attraverso la quale si possono modificare i parametri relativi ad ogni ferro o gruppo di staffe prima di premere il tasto di conferma.

14.5.4 La barra delle armature

Sulla barra delle armature della finestra principale si trovano le icone che permettono una gestione agevole di alcune proprietà e funzioni dei ferri introdotti.

- Carica armatura ultimo salvataggio: se esistente, permette di caricare l'armatura precedentemente salvata eliminando quella corrente.
- Salva armatura corrente: salva l'armatura disposta previo salvataggio della struttura.
- 🖻 Proprietà: visualizza la finestra Proprietà del ferro selezionato.
- Gain Sinestra grafici → Momento resistente: visualizza nella finestra superiore il diagramma del momento flettente e aggiorna quello resistente.
- Gasting Taglio resistente: visualizza nella finestra superiore il diagramma del taglio e aggiorna quello resistente.
- Gar Finestra grafici → Distinta staffe: visualizza nella finestra superiore la distinta delle staffe per ogni campata.
- 💈 Aggiorna finestra grafici: aggiorna la visualizzazione corrente della finestra superiore.
- Allinea al copriferro: adegua l'altezza del blocco di staffe selezionato alla campata corrente e lo riposiziona rispettando il copriferro.
- Allinea verticalmente: estende le estremità del ferro selezionato fino agli assi degli appoggi della campata corrente.
- 🛃 Allinea alla rampa: riposiziona il ferro selezionato parallelamente all'asse della rampa.
- 🖪 Aumenta numero ferri: aumenta il numero di ferri rappresentato dal ferro selezionato.
- Riduci numero ferri: riduce il numero di ferri rappresentato dal ferro selezionato.
- Aumenta diametro: aumenta il diametro del ferro selezionato.
- Riduci diametro: riduce il diametro del ferro selezionato.
- 🏦 Aumenta passo staffe: aumenta il passo del blocco di staffe selezionato.
- Riduci passo staffe: riduce il passo del blocco di staffe selezionato.
- X Elimina selezione: elimina il ferro selezionato.
- M Elimina staffe: permette di eliminare tutti i blocchi di staffe presenti.
- Elimina longitudinali: permette di eliminare tutti i ferri longitudinali presenti.
- Elimina tutto: elimina sia i ferri longitudinali che i blocchi di staffe presenti.
- Aggiorna calcoli: riesegue le verifiche necessarie dopo una variazione delle armature.
- Snap 1 permette, se attivato, spostamenti del mouse su una griglia con passo indicato a fianco.

14.5.5 Funzioni sulla barra di stato

Sulla barra di stato, nella parte bassa dello schermo, sono presenti un campo che indica lo stato attuale dello SNAP (ON/OFF) ed un campo che indica lo stato attuale della funzione ORTHO (ON/OFF). Lo stato di queste funzioni può essere cambiato facendo un doppio clic sul campo medesimo.

SNAP ON	ORTHO OFF
---------	-----------

Fig. 14.14 - Funzioni sulla barra di stato

Con la funzione ORTHO si limita il puntatore a spostamenti solo orizzontali o verticali. Tale funzione si rende utile per spostare un ferro senza perdere l'allineamento oppure per ottenere uno stiramento del ferro lungo il suo asse.

14.5.6 Finestra proprietà dei ferri longitudinali

La visualizzazione della finestra delle proprietà di un ferro si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un ferro già introdotto si può procedere in due modi:

- selezionare un ferro e premere il tasto Proprietà sulla barra delle armature;

- posizionare il puntatore su un ferro, premere il tasto destro del mouse e selezionare la voce di menù Proprietà.

Ferro Longitudinale	×
Posizione 4 - Piegato Numero di ferri 2 Ø 16	•
L principale	~
Lunghezza di Ancoraggio Sinistra Destra in centimetri 0 0 in numero di diametri]
Estremità Geometria Quotatu Sinistra Destra ▲x 0 cm 0 cm ∆y 30 cm 30 cm	ira
(OK) Ann	ulla

La finestra delle proprietà consente di configurare o modificare le caratteristiche di un ferro.

Fig. 14.15 - Finestra proprietà delle armature longitudinali.

- Posizione e denominazione del ferro: indicano la posizione che il ferro occupa nella lista dei ferri e la tipologia del ferro selezionato.
- Numero dei ferri e diametro: il diametro ed il numero di ferri rappresentati da quello selezionato.
- Lunghezza principale e riferimento: da due liste a discesa si possono selezionare la lunghezza principale espressa in termini di campata ed il riferimento a partire dal quale va valutata la lunghezza stessa (es.: se le scelte fatte fossero 1+1/4 di campata e da sinistra, avremmo, partendo da sinistra, una lunghezza principale pari alla luce della campata corrente più un quarto della luce della campata successiva). In fase di inserimento di un nuovo ferro, viene proposta una lunghezza iniziale pari alla luce della campata corrente e che potrà essere modificata sia operando una scelta diversa dalla lista e sia intervenendo sulla scheda Geometria descritta in seguito. Nel caso in cui la lunghezza principale venga assegnata tramite la scheda Geometria, i due campi predisposti risulteranno vuoti.
- Lunghezza di ancoraggio: è la lunghezza in aggiunta a quella principale e della quale non se ne tiene conto nelle verifiche e nella definizione dei diagrammi resistenti. questo parametro può essere inserito in duplice modo:
 - esprimendolo in centimetri;
 - esprimendolo in numero di diametri.
- Scheda Estremità. In questa scheda vanno inseriti il tipo di estremità sia destra che sinistra da selezionare da un elenco a discesa ed i valori dei parametri.

Fig. 14.16 - Tipi di estremità per le armature longitudinali.

 Scheda Geometria. In questa sezione è possibile modificare il punto di inserimento del ferro (estremo di sinistra) attraverso le coordinate X e Y e la geometria mediante una tabella dove il ferro viene suddiviso in singoli tratti ad ogni deviazione lungo il suo sviluppo. Per ogni tratto si possono modificare la lunghezza assoluta del tratto stesso e/o le proiezioni sugli assi x e y mentre la colonna relativa all'inclinazione del tratto è solo di tipo informativo. Il tratto interessato dalla modifica viene evidenziato in rosso.

Estremità		Geometria		Quotatura	
Coord. origine [cm]: X 83 Y 455					
Tratto	L [cm]	Dx [cm]	Dy [cm]	Angolo (*)	
1	312,500	312,500	0,000	0,000000	
2	340,000	300,000	-160,000	28,072487	
3	61,500	61,500	0,000	0,000000	
				<u> </u>	
				-	
Ι.					

Fig. 14.17 - Scheda di modifica della geometria del ferro longitudinale.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del ferro nonché decidere se mostrare:
 - la scritta Pos. seguita da un numero identificativo;
 - la scritta inf, sup, par ad indicare la posizione del tratto (inferiore, superiore o intermedia per ferri di parete);
 - la lunghezza totale del ferro comprendente le lunghezze di ancoraggio e le estremità;
 - il numero dei ferri ed il diametro;
 - le quotature parziali dei singoli tratti.

Estremità Geometria Quotatura				
🔽 Mostra la scritta Pos.x 🛛 🔽 Mostra indicatore inf/sup/par				
Font: 7, Arial				
Colore:				
🔽 Mostra lunghezza totale 🛛 🔽 Mostra numero ferri e diametro				
Font 9, Arial				
Colore:				
Mostra quotature parziali				
Font 7, Arial				
Colore:				

Fig. 14.18 - Scheda di modifica delle quotature del ferro longitudinale.

14.5.7 Finestra proprietà delle staffe

La visualizzazione della finestra proprietà delle staffe si attiva ad ogni nuovo inserimento di armatura. Per visualizzare o modificare le proprietà di un blocco staffe già introdotto si può procedere in due modi:

- selezionare il blocco e premere il tasto Proprietà sulla barra delle armature;

- posizionare il puntatore su un blocco staffe, premere il tasto destro del mouse e selezionare la voce di menù Proprietà.

La finestra delle proprietà consente di configurare o modificare le caratteristiche di uno o più gruppi di staffe.

- Scheda Blocchi. Ogni qualvolta si introducono uno o più gruppi di staffe si visualizza questa scheda dove risultano abilitate solo le sezioni relative ai blocchi immessi. Se invece si sta modificando un gruppo di staffe già presenti, nella scheda si visualizza una sola sezione denominata *Definizione Blocco*. Per ogni sezione sono definibili le caratteristiche del blocco.
 - Diametro Ø: diametro delle staffe del blocco.
 - Origine: ascissa, valutata rispetto al bordo sinistro della finestra principale, alla quale ha inizio il blocco.
 - Ampiezza: dimensione del blocco lungo l'asse della campata.
 - Bracci: numero di bracci delle staffe (2 o 4).
 - Passo: distanza tra due staffe nella direzione del blocco.

Armatura Staffe - Campata 1						
Blocchi Staffa Quotatura						
Blocco Sinistro	Ø 8 💌					
Origine 25 cm	Ampiezza 95,75 cm					
Bracci 2 💌	Passo 15 cm					
Blocco Centrale	Ø 8 💌					
Origine 120,75 cm	Ampiezza 313,5 cm					
Bracci 2 💌	Passo 20 cm					
Blocco Destro	Ø 8 💌					
Origine 434,25 cm	Ampiezza 60,75 cm					
Bracci 2	Passo 15 cm					
	OK Annulla					

Fig. 14.19 - Scheda Blocchi della finestra proprietà staffe.

- Scheda Staffa. In questa scheda è visibile una configurazione interattiva delle staffe ed è
 possibile modificare, oltre alla lunghezza di ancoraggio delle estremità, il tipo di chiusura
 potendo scegliere tra:
 - Chiusura a 45°: le estremità sono inclinate di 45°.
 - Chiusura a uncino: le estremità sono raccordate a forma di uncino.
 - Chiusura a cappello: la staffa è composta da due elementi distinti a forma di U che, sovrapposti, chiudono la staffa.

Fig. 14.20 - Scheda Staffe della finestra proprietà staffe.

- Scheda Quotatura. In questa scheda è possibile selezionare il font ed il colore per le varie visualizzazioni delle quote in prossimità del blocco staffe e selezionare gli elementi da mostrare:
 - Mostra la scritta Pos.x: fa vedere, in prossimità del gruppo o della staffa, la scritta Pos. seguita da un numero identificativo sia nella finestra principale che nella finestra staffe e di conseguenza nei disegni esecutivi.
 - Mostra numero staffe e diametro del blocco: fa vedere il numero di staffe presenti nel blocco ed il diametro.
 - Mostra lunghezza staffa: fa vedere la lunghezza totale della staffa comprendente le lunghezze di ancoraggio agli estremi.
 - Mostra quotature parziali staffa: fa vedere le quotature parziali dei singoli tratti della staffa.

Armatura Staffe - Campata 1
Blocchi Staffa Quotatura
Mostra la scritta Pos.x Font:
 Mostra numero staffe e diametro del blocco Mostra lunghezza staffa Font:
✓ Mostra quotature parziali staffa Font:
(OK]Annulla

Fig. 14.21 - Scheda quotatura della finestra proprietà staffe.

14.5.8 Modificare senza la finestra proprietà

Alcune caratteristiche del ferro possono essere modificate senza l'ausilio della finestra proprietà.

- Punto origine: selezionare il ferro o il gruppo staffe e, tenendo premuto il tasto sinistro del mouse, trascinare la selezione nel punto voluto. In alternativa, dopo la selezione si possono utilizzare i tasti direzionali della tastiera. In entrambi i casi il movimento avviene lungo una griglia definita con la funzione SNAP e può essere vincolato dalla funzione ORTHO.
- Numero di ferri: selezionare il ferro con il mouse e, sulla barra delle armature, premere il tasto

 una sola volta per aumentare il numero di ferri di una unità, invece il tasto
 per ridurne il numero. Lo stesso risultato si ha premendo il tasto destro del mouse quando è posizionato sopra al ferro e scegliere Aumenta numero ferri oppure Riduce numero ferri dal menù che appare.

- Diametro: selezionare il ferro o il gruppo staffe e, sulla barra delle armature, premere il tasto
 per aumentare il diametro ed il tasto
 per diminuirlo. Anche in questo caso si può usare il tasto destro del mouse e quindi selezionare Aumenta diametro ferro/staffe oppure Riduce diametro ferro/staffe per ottenere lo stesso effetto.
- Allinea agli appoggi: per riposizionare un ferro in modo da estendere gli estremi fino agli assi degli appoggi della campata corrente, premere il tasto sulla barra delle armature oppure scegliere Allinea agli appoggi dal menu che appare premendo il tasto destro.
- Centra sull'appoggio: per riposizionare un ferro in modo da risultare centrato sull'appoggio più vicino al puntatore, premere il tasto Sulla barra delle armature oppure scegliere Centra sull'appoggio dal menu che appare premendo il tasto destro.
- Allinea al copriferro: per adeguare l'altezza del blocco di staffe selezionato alla campata corrente e riposizionarlo rispettando il copriferro, premere il tasto sulla barra delle armature oppure scegliere Allinea al copriferro dal menu che appare premendo il tasto destro del mouse.
- Allinea ai pilastri: per estendere il blocco di staffe selezionato al filo dei pilastri della campata corrente, premere il tasto sulla barra delle armature oppure scegliere Allinea al filo pilastri dal menu che appare premendo il tasto destro del mouse.
- Elimina selezione: elimina il ferro o il blocco staffe selezionato se viene premuto il tasto sulla barra delle armature oppure selezionando Elimina ferro o Elimina gruppo staffe dal menù tasto destro del mouse.
- Elimina staffe: elimina in modo permanente tutti i gruppi di staffe quando viene premuto il tasto [™] sulla barra delle armature.
- Elimina longitudinali: elimina in modo permanente tutti i ferri quando viene premuto il tasto
 sulla barra delle armature.
- Elimina tutto: elimina in modo permanente tutti i ferri longitudinali e tutte le staffe quando viene premuto il tasto sulla barra delle armature.
- Modifica geometria di un ferro: con il solo uso del mouse e con l'aiuto delle funzioni SNAP e
 ORTHO si può modificare nel modo voluto la lunghezza di un singolo tratto del ferro. Al
 momento della selezione, sugli estremi di ogni singolo tratto del ferro appaiono delle maniglie
 di colore grigio; facendo doppio clic su una maniglia, questa assume il colore rosso. A questo
 punto cliccando su una maniglia diversa da quella selezionata e trascinando il mouse col tasto
 sinistro premuto, l'effetto sarà quello di uno stiramento del solo tratto attiguo alla maniglia
 rossa e dalla parte del puntatore.
- Modifica geometria di un gruppo staffe: dopo aver impostato nel modo voluto le funzioni SNAP e ORTHO, selezionare con il mouse un blocco di staffe. Al momento della selezione, su ogni angolo del blocco appaiono delle maniglie di colore grigio; facendo doppio clic su una maniglia di un lato, entrambe le maniglie di quel lato assumono il colore rosso. A questo punto cliccando su una maniglia dell'altro lato e trascinando il mouse col tasto sinistro premuto, l'effetto sarà quello di uno stiramento del blocco ed il valore del passo del nuovo blocco sarà uguale a quello preesistente.
14.6 Esempio di calcolo di scala con trave a ginocchio

Calcolo e verifica agli Stati Limite di una scala con trave a ginocchio in c.a. su due rampe. Sono utilizzati calcestruzzo di classe Rck 250 e barre del tipo Feb38k.

ELABORATI GRAFICI PRODOTTI:

Fig. 14.22 - Diagrammi di momento e taglio.

Fig. 14.23 - Pianta e carpenteria.

Fig. 14.24 - Sezioni gradino e pianerottolo.

Fig. 14.25 - Disposizione armature trave a ginocchio.

Fig. 14.26 - Disposizione armature travi di testata e pianerottolo.

£Ω

RELAZIONE DI CALCOLO

≌<mark>0</mark> 336

SCALA CON TRAVE A GINOCCHIO IN C.A. Metodo di verifica: Stati Limite

1014

L=380

DATI GEOMETRICI ED ELASTICI

Larghezza Ram	ра				[cm]		120
Dislivello Piane	rottoli				[cm]]	170
Alzata					[cm]]	17,0
Pedata					[cm]	Ì	30,0
Larghezza Trombino [cm]]	40	
Copriferro					[cm]	Ì	3
Coeff. di omoge	neizzazio	one					15
Classe di resiste	enza del o	calcestruzz	o (R _{ck})		[kg/	cm ²]	250
Resistenza cara	tteristica	del cls (f _{ck})		[kg/	cm ²]	207,5
Resistenza di ca	alcolo del	$cls(\alpha \cdot f_{cd})$			[kg/	cm ²]	110,2
Tipo di acciaio							Fe B38k
Tensione caratt	eristica d	li snervam	ento (f _{yk})		[kg/	cm ²]	3750
Resistenza di ca	alcolo del	l'acciaio (f _y	/d)		[kg/	[cm ²]	3260,9
			. .	6			
Geometria	Luce	Altezza	Inerzia	G _{k perm.}	Qk var.	G _{d per}	rm. Qd var.
e carichi	[cm]	[cm]	$[m^4]$	[kg/m²]	[kg/m²]	[kg/n	n"] [kg/m"]

Sbalzo sinistro	100	20	0,005400	370,3	300	518,4	450
Rampa	300	5	0,000013	475,3	300	665,4	450
Sbalzo destro	120	20	0,005400	370,3	300	518,4	450

 G_{k} , Q_k : valori caratteristici delle azioni permanente e variabile. G_d , Q_d : valori di calcolo delle azioni permanente e variabile.

TRAVE A GINOCCHIO

Geometria e carichi	Base [cm]	Alt. [cm]	Inerzia [m ⁴]	G _{k perm.} [kg/m]	Q _{k var.} [kg/m]	G _{d perm.} [kg/m]	Q _{d var.} [kg/m]	M _{d torc.} [kg∙m/m]
Pianer. riposo	30	60	0,005400	968	420	1356	630	776
Campata	30	60	0,005400	1088	360	1523	540	1016
Pianer. arrivo	30	60	0,005400	968	420	1356	630	776

TRAVI DI TESTATA

Geometria	Luce [cm]	Base [cm]	Altezza [cm]	Inerzia [m ⁴]
Testata riposo	310	25	40	0,001333
Testata arrivo	310	25	40	0,001333

Carichi	G _{k perm.} [kg/m]	Q _{k var.} [kg/m]	G _{d perm.} [kg/m]	Q _{d var.} [kg/m]	M _{d sin.} [kg∙m]	M _{d des.} [kg∙m]
Testata riposo	250	0	350	0	2392	-2392
Testata arrivo	250	0	350	0	2364	-2364

PIANEROTTOLO

Geometria		
Luce	[cm]	310
Altezza	[cm]	20
Interasse Travetti	[cm]	40
Spessore Travetti	[cm]	10
Spessore Soletta	[cm]	5

Carichi G _{k perm.} [kg/m ²]	Q _{k var.} [kg/m²]	G _{d perm.} [kg/m ²]	Q _{d var.} [kg/m²]	M _{d sin.} [kg•m]	M _{d des.} [kg∙m]
370	300	518	450	669	-669

Geometria		
Luce	[cm]	135
Base minima	[cm]	7,0
Base massima	[cm]	34,5
Altezza utile	[cm]	16,8

Carichi perpendicolari

G _{k perm.}	Q _{k var.}	G _{d perm.}	Q _{d var.}
[kg/m]	[kg/m]	[kg/m]	[kg/m]
124	78	174	117

TRAVE A GINOCCHIO

CARATTERISTICHE DELLE SOLLECITAZIONI

Vincoli: appo	Vincoli: appoggio agli estremi e pianerottoli flessibili a torsione						
Sezione	Lato	M. flet.	Taglio	M. torc.			
[cm]		[kg∙m]	[kg]	[kg∙m]			
-100		0,0	0,0	2391,6			
-50		-248,2	-992,9	2003,9			
0	sin.	-992,9	-1985,8	1616,1			
0	des.	-992,9	2948,3	1616,1			
38		-21,5	2164,5	1229,8			
75		638,2	1401,3	853,8			
112		1015,5	638,2	477,7			
150		1109,1	-145,6	91,5			
188		904,9	-929,4	-294,8			
225		419,8	-1692,6	-670,9			
262		-347,7	-2455,8	-1046,9			
300	sin.	-1429,8	-3239,6	-1433,2			
300	des.	-1429,8	2382,9	-1433,2			
360		-357,4	1191,5	-1898,5			
420		0,0	0,0	-2363,8			

Vincoli: incastro agli estremi e pianerottoli rigidi a torsione

Sezione	Lato	M. flet.	Taglio	M. torc.
[cm]		[kg∙m]	[kg]	[kg∙m]
-100				0,0
-50				836,6
0				1673,1
13		-1716,6	2826,5	1539,3
38		-1113,3	2290,2	1249,3
75		-495,1		836,6
112		-159,4	763,9	423,9
150		-108,4	-19,9	0,0
188		-355,3	-803,7	-423,9
225		-881,9		-836,6
262		-1690,8	-2330,1	-1249,3
288			-2845,7	-1539,3
300				-1673,1
360				-836,6
420				0,0

X [cm]	M. flet. [kg·m]	Taglio [kg]	M. torc. [kg·m]	A _f [cm ²]	A' _f [cm ²]	A _{staffe}	Rif. In 1
lemi		[16]					[11.]
-97	0	0	2392	4,5	4,5	9,5	5
0	-993	2948	1673	4,5	4,5	9,5	4-7
143	1114	-1	163	4,5	2,3	9,5	2
287	-2397	-2971	-1528	2,3	4,5	9,5	1
300	-1430	-3240	-1673	2,3	4,5	9,5	3-8
417	0	0	-2364	2,3	6,8	9,5	6

SOLLECITAZIONI MASSIME E ARMATURE

Armatura di ripartizione soletta

ø6/20 cm

VERIFICHE

Rif. 5: Momento torcente max(+) (pianerottoli infinitamente flessibili) Verifica S.L.U.

Resistenza a taglio del solo cls (V _{Rd1})	[kg]	5035,3
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	56550,2
Resistenza sezione con armatura a taglio (V _{Rd3})	[kg]	62266,7
Resistenza a torsione bielle compresse (T _{Rd1})	[kg]	3361,5
Resistenza a torsione armatura staffe (T_{Rd2})	[kg]	13112,7
Resistenza a torsione armat. longitudinale(T _{Rd3})	[kg]	7353,2
$(M_t / T_{Rd1})^2 + (T / V_{Rd2})^2$		0,25 < 1

Rif. 4: Taglio massimo positivo

Rif. 7: Momento torcente max(+) (pianerottoli infinitamente rigidi) Verifica S.L.U.

Asse neutro (x/d = 0,10 < 0,45)	[cm]	5,9
Momento resistente ultimo (M _{Rd})	[kg∙m]	8013,9
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	5035,3
Resistenza del cls con armatura a taglio (V_{Rd2})	[kg]	56550,2
Resistenza sezione con armatura a taglio (V_{Rd3})	[kg]	62266,7
Resistenza a torsione bielle compresse (T _{Rd1})	[kg]	3361,5
Resistenza a torsione armatura staffe (T_{Rd2})	[kg]	13112,7
Resistenza a torsione armat. longitudinale(T _{Rd3})	[kg]	7353,2
$(M_t / T_{Rd1})^2 + (T / V_{Rd2})^2$		0,25 < 1

Verifica S.L.E. per comb. di carico rara e quasi permanente

Momento flettente (per comb. rara)	[kg∙m]	-696,4
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	5,5 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	$[kg/cm^2]$	290,1 < 2625
Momento flettente (per comb. quasi perm.)	[kg·m]	-571,3
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	4,5 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	$[kg/cm^2]$	238,0 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kg·m]	3102,6 > 696,4
Trave non fessurata.		

Rif. 2: Momento flettente massimo positivo Verifica S.L.U.

Asse neutro ($x/d = 0.12 < 0.45$)	[cm]	6,6
Momento resistente ultimo (M _{Rd})	[kg·m]	8036,8
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	5035,3
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	56550,2
Resistenza sezione con armatura a taglio (V _{Rd3})	[kg]	62266,7
Resistenza a torsione bielle compresse (T _{Rd1})	[kg]	3361,5
Resistenza a torsione armatura staffe (T_{Rd2})	[kg]	13112,7
Resistenza a torsione armat. longitudinale(T _{Rd3})	[kg]	6127,7
$(M_t / T_{Rd1})^2 + (T / V_{Rd2})^2$		0,00 < 1

Verifica S.L.E. per comb. di carico rara e quasi permanente

Momento flettente (per comb. rara)	[kg∙m]	781,6
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	6,6 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	327,5 < 2625
Momento flettente (per comb. quasi perm.)	[kg∙m]	641,1
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	5,4 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	268,6 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kg∙m]	3000,0 > 781,6
Trave non fessurata.		

Rif. 1: Momento flettente massimo negativo Verifica S.L.U.

Asse neutro (x/d = 0,09 < 0,45)	[cm]	5,0
Momento resistente ultimo (M _{Rd})	[kg∙m]	4827,9
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	4741,2
Resistenza del cls con armatura a taglio (V_{Rd2})	[kg]	56550,2
Resistenza sezione con armatura a taglio (V_{Rd3})	[kg]	62266,7
Resistenza a torsione bielle compresse (T _{Rd1})	[kg]	3361,5
Resistenza a torsione armatura staffe (T _{Rd2})	[kg]	13112,7
Resistenza a torsione armat. longitudinale(T _{Rd3})	[kg]	6127,7
$(M_t / T_{Rd1})^2 + (T / V_{Rd2})^2$		0,21 < 1

Verifica S.L.E. per comb. di carico rara e quasi permanente

Momento flettente (per comb. rara)	[kg·m]	-1681,5
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	14,2 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	704,6 < 2625
Momento flettente (per comb. quasi perm.)	[kg·m]	-1379,4
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	11,6 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	577,9 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kg·m]	3000,0 > 1681,5
Trave non fessurata.		

Rif. 3: Taglio massimo negativo

Rif. 8: Momento torcente max(-) (pianerottoli infinitamente rigidi)

Verifica S.L.U.

Asse neutro (x/d = 0,09 < 0,45)	[cm]	5,0
Momento resistente ultimo (M _{Rd})	[kg∙m]	4827,9
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	4741,2
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	56550,2
Resistenza sezione con armatura a taglio (V _{Rd3})	[kg]	62266,7
Resistenza a torsione bielle compresse (T _{Rd1})	[kg]	3361,5
Resistenza a torsione armatura staffe (T_{Rd2})	[kg]	13112,7
Resistenza a torsione armat. longitudinale(T _{Rd3})	[kg]	6127,7
$(M_t / T_{Rd1})^2 + (T / V_{Rd2})^2$		0,25 < 1

Verifica S.L.E. per comb. di carico rara e quasi permanente

[kg∙m]	-1002,9
[kg/cm ²]	8,5 < 124,5
[kg/cm ²]	420,2 < 2625
[kg∙m]	-822,7
[kg/cm ²]	6,9 < 93,4
[kg/cm ²]	344,7 < 1875
[kg∙m]	3000,0 > 1002,9
	[kg·m] [kg/cm ²] [kg/cm ²] [kg·m] [kg/cm ²] [kg/cm ²] [kg·m]

Rif. 6: Momento torcente max(-) (pianerottoli infinitamente flessibili)

Verifica S.L.U.

Resistenza a taglio del solo cls (V_{Rd1}) Resistenza del cls con armatura a taglio (V_{Rd2}) Resistenza sezione con armatura a taglio (V_{Rd3}) Resistenza a torsione bielle compresse (T_{Rd1}) Resistenza a torsione armatura staffe (T_{Rd2})	[kg] [kg] [kg] [kg] [kg]	4741,2 56550,2 62266,7 3361,5 13112,7
Resistenza a torsione armat. longitudinale(T_{Rd3}) (M_t / T_{Rd1}) ² + (T / V_{Rd2}) ²	[kg]	7353,2 0,25 < 1
Verifica allo stato limite di deformazione		
Abbassamento max per comb. rara	[mm]	0,04
Abbassamento max per comb. quasi perm.	[mm]	0,03

PROSPETTO ARMATURE

Tratto	Arm. inf.	Piegati	Arm. sup.	Parete	Arm. Staffe
Pian.Riposo	4ø12	2ø12	2ø12	2+2ø12	ø8/18"
Rampa	2ø12	2ø12	2ø12	2+2ø12	ø8/18"
Pian.Arrivo	2ø12	2ø12	4ø12	2+2ø12	ø8/18"

TRAVE DI TESTATA SX (Riposo)

Momento massimo positivo	[kg∙m]	2812,1
Momento massimo negativo	[kg·m]	-228,7
Taglio massimo	[kg]	542,5
Armatura inferiore	[cm ²]	3,2 (5ø10)

Armatura di parete di Armatura a staffe S	0,2 (2ø10) 1+1ø10 Staffe ø8/29"
---	---------------------------------------

Verifica S.L.U.

Asse neutro $(x/d = 0,15 < 0,45)$	[cm]	5,7
Momento resistente ultimo (M _{Rd})	[kg∙m]	4450,7
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	3116,6
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	30590,0
Resistenza sezione con armatura a taglio (V_{Rd3})	[kg]	17044,3

Verifica S.L.E. per comb. di carico rara e quasi permanente

Momento flettente (per comb. rara) Tensione nel cls (comb. rara) (σ_c) Tensione nel ferro (comb. rara) (σ_s) Momento flettente (per comb. guasi perm.)	[kg·m] [kg/cm ²] [kg/cm ²]	2008,6 40,4 < 124,5 1524,5 < 2625 2008 6
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	40,4 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	1524,5 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kg·m]	1006,1 > 2008,6
Ampiezza delle fessure (W _k)	[mm]	0,05 < 0,3

TRAVE DI TESTATA DX (Arrivo)

Momento massimo positivo	[kg∙m]	2784,3
Momento massimo negativo	[kg·m]	-228,7
Taglio massimo	[kg]	542,5
Armatura inferiore	[cm ²]	3,2 (5ø10)
Armatura superiore	[cm ²]	0,2 (2ø10)
Incremento armatura di parete		1+1ø10
Armatura a staffe		Staffe ø8/29"

Verifica S.L.U.

Asse neutro (x/d = 0,15 < 0,45)	[cm]	5,7
Momento resistente ultimo (M _{Rd})	[kg∙m]	4450,7
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	3116,6
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	30590,0
Resistenza sezione con armatura a taglio (V_{Rd3})	[kg]	17044,3

Verifica S.L.E. per comb. di carico rara e quasi permanente

Momento flettente (per comb. rara)	[kg∙m]	1988,8
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	40,0 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	1509,4 < 2625
Momento flettente (per comb. quasi perm.)	[kg·m]	1988,8
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	40,0 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	1509,4 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kg·m]	1006,1 > 1988,8
Momento di fessurazione (comb. rara) (M _f)	[kg·m]	0,05 < 0,3

PIANEROTTOLO ALLEGGERITO (per un travetto)

[kg·m]	1134,6
[kg∙m]	-253,1
[kg]	600,4
[cm ²]	2,1 (1ø14+1ø10)
[cm ²]	0,5 (1ø10)
	ø6/20 cm
	[kg∙m] [kg∙m] [kg] [cm²] [cm²]

Verifica S.L.U.

Asse neutro (x/d = 0,18 < 0,45)	[cm]	2,6
Momento resistente ultimo (M _{Rd})	[kg∙m]	1286,2
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	786,2
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	5952,7
Resistenza sezione con armatura a taglio (V_{Rd3})	[kg]	1837,6

Verifica S.L.E. per comb. di carico rara e quasi permanente

Momento flettente (per comb. rara)	[kg·m]	795,5
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	49,4 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	2090,6 < 2625
Momento flettente (per comb. quasi perm.)	[kg∙m]	649,7
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	40,3 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	1707,4 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kg∙m]	226,5 < 795,5
Ampiezza delle fessure (W _k)	[mm]	0,08 < 0,3

GRADINO A SBALZO

Momento	[kg∙m]	265,3
Taglio	[kg]	393,0
Armatura a flessione	[cm ²]	0,5 (2ø8)
Armatura a staffe		Staffe ø6/15 cm

Verifica S.L.U.

Asse neutro (x/d = 0,14 < 0,45)	[cm]	1,9
Momento resistente ultimo (M _{Rd})	[kg·m]	452,1
Resistenza a taglio del solo cls (V _{Rd1})	[kg]	541,6
Resistenza del cls con armatura a taglio (V _{Rd2})	[kg]	3189,7
Resistenza sezione con armatura a taglio (V_{Rd3})	[kg]	2110,2

Verifica S.L.E. per comb. di carico rara e quasi permanente

Momento flettente (per comb. rara)	[kg·m]	184,4
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	27,3 < 124,5
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	1436,9 < 2625
Momento flettente (per comb. quasi perm.)	[kg·m]	134,5
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	19,9 < 93,4
Tensione nel ferro (comb. quasi perm.) (σ_s)	[kg/cm ²]	1047,7 < 1875
Momento di fessurazione (comb. rara) (M _f)	[kg·m]	155,7 < 184,4
Ampiezza delle fessure (W _k)	[mm]	0,02 < 0,3

Pos.	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
1	12	611	4	2444	21,70
2	12	247	4	988	8,77
3	12	182	4	728	6,46
4	12	252	4	1008	8,95
5	12	156	4	624	5,54
6	12	619	4	2476	21,98
7	12	606	4	2424	21,52
8	12	180	8	1440	12,78
9	12	474	8	3792	33,67
10	12	184	8	1472	13,07

<u>COMPUTO MATERIALI (per 2 rampe e 2 pianerottoli)</u>

Lista Ferri Longitudinali Trave Ginocchio

Lista Ferri Longitudinali Elementi Secondari

Riferimento	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
Ferri sup. testata sin.	10	414	2	828	5,10
Ferri inf. testata sin.	10	414	5	2070	12,76
Ferri parete testata sin.	10	348	2	696	4,29
Ferri sup. testata des.	10	414	2	828	5,10
Ferri inf. testata des.	10	414	5	2070	12,76
Ferri parete testata des.	10	348	2	696	4,29
Ferri piegati pianerottolo	10	307	5	1535	9,46
Ferri inferiori pianerottolo	14	442	5	2210	26,71
Ferro a molla gradini	8	367	20	7340	28,96
Ferro piegato gradini	8	167	20	3340	13,18

Totali Longitudinali

	Ltot [m]	Massa [kg]
Totale Ferri Ø12	173,96	154,44
Totale Ferri Ø10	87,23	53,76
Totale Ferri Ø14	22,1	26,71
Totale Ferri Ø8	106,8	42,14

Lista Ripartitori e Staffe

Riferimento	Ø [mm]	L [cm]	n.	Ltot [cm]	Massa [kg]
Ripartitori rampa	6	322	6	1932	4,29
Staffe trave ginocchio Pos.11	8	176	10	1760	6,94
Staffe trave ginocchio Pos.12	8	176	38	6688	26,39
Staffe trave ginocchio Pos.13	8	176	12	2112	8,33
Staffe vertici rampa	8	180	0	0	0,00
Staffe gradini	6	119	160	19040	42,26
Staffe trave testata sinistra	8	126	10	1260	4,97
Staffe trave testata destra	8	126	10	1260	4,97

		Ltot [m]	Massa [kg]	
	Totale Ø6	209,72	46,55	
	Totale Ø8	130,8	51,6	
- Armatura (Fe B 38 k controllato) Calcestruzzo (R _{ck} =250) Laterizi (15x30x25)			[kg] [m ³] [n.]	376 4,13 33
Percentuale di armatura in peso Incidenza peso armatura sul volu	ıme cls		[%] [kg/m ³]	3,63 90,83

Totali Ripartitori e Staffe

228

ff telaio piano

Questo modulo consente di calcolare e produrre gli esecutivi di un telaio piano a maglie rettangolari. Le azioni agenti possono essere di tipo verticale (carichi uniformemente distribuiti), orizzontali (forze concentrate in corrispondenza degli impalcati) e nodali (momenti concentrati nei nodi).

I calcoli e le verifiche possono essere eseguiti sia col metodo delle Tensioni Ammissibili che con gli Stati Limite.

15.1 Avvio del modulo

Prima di iniziare il lavoro, occorre accertarsi che le opzioni correnti corrispondano alle proprie esigenze. Infatti tali opzioni rimangono valide per tutti i moduli fino a quando non interviene una nuova modifica. Sono ammesse modifiche anche in momenti successivi.

Dopo l'avvio del modulo appaiono, sulla destra, opzioni relative ai carichi e alle tensioni ammissibili.

- Opzione Metodo di Verifica: impostandola su TA (SL), le elaborazioni e le verifiche verranno eseguite secondo il metodo delle Tensioni Ammissibili (Stati Limite).
- Opzione Modalità Tensioni: se impostata su Automatico, dopo l'immissione della resistenza caratteristica del calcestruzzo e del tipo di acciaio, il programma calcola automaticamente le relative tensioni ammissibili principali e tangenziali. In alternativa è possibile digitare manualmente i valori voluti.
- Opzione Modalità Carichi: se impostata su Automatico consente di calcolare automaticamente il peso proprio del solaio mentre si digitano i parametri geometrici necessari. In alternativa è possibile digitare manualmente il valore voluto.
- •

Metodo di calcolo e verifi	S.L.
✓ Inserimento automatico	armature
Modalità Tensioni	
C Manuale	
 Automatico 	
- Modalità Carichi]
C Manuale	
 Automatico 	

Fig. 15.1 - Scelta modalità di calcolo.

15.2 Inserimento dei dati

L'input dei dati è accompagnato da una guida grafica sulla destra dello schermo dove viene evidenziato in rosso l'elemento corrente i cui dati stanno per essere digitati.

In ogni scheda sono disponibili dei tasti di copia e incolla che, utilizzati correttamente, consentono di velocizzare l'input di dati ripetuti. Allo scopo bisogna:

- 1. selezionare la serie di celle da ricopiare
- 2. premere il tasto *copia*
- 3. selezionare un numero di celle uguale alla prima selezione
- 4. premere il tasto incolla

Fig. 15.2 - Guida grafica di aiuto all'input dei dati.

15.2.1 Geometria e Materiali

In questa cartella vengono richieste, oltre all'indicazione dei carichi agenti, le caratteristiche del telaio e dei materiali usati:

- Classe del calcestruzzo.
- Tipo di acciaio utilizzato.
- Coefficiente di omogeneizzazione.
- Numero dei ritti.
- Numero degli impalcati.
- Copriferro.

Se l'opzione Modalità Tensioni non è impostata su Automatico, verranno inoltre richiesti:

- La tensione caratteristica e di calcolo del calcestruzzo.
- La tensione caratteristica e di calcolo del ferro.
- La tensione tangenziale di calcolo del calcestruzzo.

Carichi Verticali Carichi N	lodali	Carichi	Orizzontali]
Geometria e Materiali Numerazione	Pilastri	Trav	versi	Ritti
- Calcestruzzo Classe del calcestruzzo:	C25/30	•	Telaio Numero di	pilastri: [cm] 4
Rresistenza caratteristica cubica (Rck):	[daN/cm²]	300	Numero di	impalcati: [cm] 3
Resistenza di calcolo:	[daN/cm²]	141,10	C	(
Resistenza di calcolo tangenziale:	[daN/cm²]	11,94	Copriferro:	
Resistenza di calcolo a trazione:	[daN/cm²]	30,70	Carichi ag	enti
Acciaio			Caric	hi Verticali
Tipo di acciaio: B450C		•	Caric	hi Nodali
Resistenza caratteristica di snervamento	: [daN/cm²]	4500	V Lanc	hi Urizzontali
Resistenza di calcolo:	[daN/cm²]	3913,04		
Coefficiente di omogeneizzazione:		15		

Fig. 15.3 - Scheda Geometria e Materiali.

15.2.2 Numerazione Pilastri

In questa cartella va inserita la numerazione dei pilastri da sinistra verso destra.

Carichi Ver	ticali	C	arichi Nodali	Carichi Orizzontali]
Geometria e Ma	teriali	Numera	azione Pilastri 🛽 🗎	Traversi	Ritti
Num	erazio	ne de	ei pilastri		
	Pilastro)	Nu	merazione	Copia
	1			1	Incolla
	2			2	
	3		3		Cancella
	4			4	
					Aggiorna
Denor	ninazione d	del pilast	ro n. 1		
Selezio	one celle:				

Fig. 15.4 - Scheda Numerazione Pilastri.

15.2.3 Traversi

In questa cartella vanno inseriti, per ogni piano dal basso verso l'alto e per ogni trave da sinistra verso destra, i dati relativi ai traversi:

- Luce della campata.
- Base della sezione.
- Altezza della sezione.

Carichi Verticali		Carichi Noda	arichi Nodali 🔤 📜 Carichi Oriz		
Geometria e Materiali	∐ Ni	umerazione Pila	stri	Traversi	Ritti
Geometri	ia de	elle travi			
Piano / Tr	ave	Luce [cm]	Base [cm]	Altezza [cm]	Соріа
1* 1-	2	505	30	40	Incolla
1* 2-	.3	640	30	40	
1* 3-	4	440	30	40	Cancella
2* 1-	2	505	30	40	
2* 2-	3	640	30	40	
2* 3-	4	440	30	40	
3* 1-	2	505	80	30	
3* 2-	3	640	80	30	
3* 3-	4	440	80	30	Aggiorna
Impalcato del Base sezione Selezione cello	2* ord della t e: B4:	ine. rave 1-2 B4			

Fig. 15.5 - Scheda dati dei Traversi.

15.2.4 Ritti

In questa cartella vanno inseriti, per ogni piano dal basso verso l'alto e per ogni ritto da sinistra verso destra, i dati relativi ai pilastri:

- Luce del pilastro.
- Base della sezione.
- Altezza della sezione.

Carichi Verticali		richi Verticali Carichi Nodali Carichi Orizzo		Carichi Orizzonta	<u>i</u>		
ometria e Materiali 🔰 Nu		tria e Materiali 🔰 Numerazione Pilastri 🎽			Traversi	Ĩ	Ritti
	Geome	tria de	ei pilastri				
	Piano /	Ritto	Luce [cm]	Base [cm]	Altezza [cm]		Copia
	1*	1	400	60	30		Incolla
	1*	2	400	30	60		
	1*	3	400	30	60		Cancella
	1*	4	400	30	50		
	2*	1	330	50	30		
	2*	2	330	30	40		
	2*	3	330	30	40		
	2*	4	330	30	40		
	3.	1	330	40	30	-	Aggiorna
	Impalcato d Luce del rit Selezione c	lel 1* ord to 1 elle:	ine.				

Fig. 15.6 - Scheda dati dei Ritti.

15.2.5 Carichi Verticali

In questa cartella vanno inseriti, per ogni piano dal basso verso l'alto e per ogni trave da sinistra verso destra, i carichi agenti sui traversi.

- Carico verticale fisso distribuito.
- Carico verticale accidentale distribuito.

Geometri	Geometria e Materiali		Numerazione P	ilastri	Traversi			Ritti
Carichi	arichi Verticali		Carichi Nodal	i	Ca	richi Oriz		
c	arich	i vertio	ali					
	Piano /	/ Trave	Q Perman. [daN/m]	Q Va (daN	riab. I/m]	Codice Carico Q var	Favorevole alle verifiche	Copia
	1*	1-2	300	40	00	2		Incolla
	1*	2-3	300	40	00	2		
	1*	3-4	300	40	00	2		Cancella
-	2*	1-2	300	40	00	2		
-	2*	2-3	300	40	00	2		
-	2*	3-4	300	40	00	2		
-	3.	1-2	600	40	00	2		
-	3*	2-3	600	40	00	2		
-	3*	3-4	600	40	00	2		Aggiorna
	mpalcato Carico ver elezione	del 1* ord ticale per celle:	i <mark>ne. Trave 1-2.</mark> nanente (positi	vo se v	erso il	basso).		

Fig. 15.7 - Scheda Carichi Verticali.

15.2.6 Carichi Nodali

In questa cartella vanno inseriti, per ogni piano dal basso verso l'alto e per ogni ritto da sinistra verso destra, i momenti agenti nei nodi ritto-traverso.

Geometria e Materiali	Numerazi	one Pilastri	Т	raversi	Ĵ	Ritti
Carichi Verticali	Carichi	Nodali 📜	Carichi (Drizzontali	۲	
Momenti	nei nodi					
Piano	/ Ritto	Momento [daNm]	Codice Carico	Favorevole alle verifiche	•	Соріа
1*	1	300	2			Incolla
1*	2	0	2			
1*	3	0	2			Cancella
1*	4	600	2			
2*	1	0	2			
2*	2	0	2			
2*	3	500	2			
2*	4	0	2			Aggiores
3*	1	0	2		-	Aggiorna
Nodo 1* impalo Selezione celle	ato, ritto 1.					

Fig. 15.8 - Scheda Carichi Nodali.

15.2.7 Carichi Orizzontali

In questa cartella vanno inseriti, per ogni piano dal basso verso l'alto, le forze orizzontali agenti in corrispondenza degli impalcati.

Fig. 15.9 - Scheda Carichi Orizzontali.

15.3 Opzioni Telaio Piano

Per accedere alle Opzioni Telaio Piano, cliccare sull'icona sulla barra degli Strumenti oppure dalla barra Menù selezionare Opzioni e poi Telaio Piano.

15.3.1 Sezione Armatura

- Diametro minimo armatura principale. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta dei diametri da utilizzare per l'armatura longitudinale principale a partire da quello indicato.
- Diametro minimo armatura di parete. Immettendo un valore compreso tra 5 e 30 si impone al programma di valutare la scelta del diametro da utilizzare per l'armatura di ripartizione a partire da quello indicato.
- Diametro minimo armatura a staffe. Immettendo un valore compreso tra 5 e 26 si impone al programma di valutare la scelta del diametro da utilizzare per le staffe a partire da quello indicato.
- Passo minimo delle staffe. Distanza minima che si vuole assegnare tra due staffe consecutive (valore compreso tra 5 e 33 cm). Per valori inferiori il programma provvede ad aumentare il diametro delle staffe.
- Ancoraggio diritto. Lunghezza di ancoraggio da adottare per i ferri diritti superiori ed inferiori e per i cavallotti.
- Piega a squadro. Lunghezza della piega ad L da adottare per i ferri diritti superiori ed inferiori e per i cavallotti.
- Piega a uncino. Prolungamento oltre il semicerchio dell'uncino.

Opzioni Telaio Piano	×
Armatura Carichi Fissi Quotature	
Diametri [mm] 16 Ø minimo armatura principale.	Ancoraggi [cm] 80 Ancoraggio diritto.
[mm] 12 Ø minimo armatura di parete. [mm] 8 Ø minimo armatura a staffe.	[cm] 25 Piega a squadro [cm] 5 Piega ad uncino
[cm] 6 Passo minimo delle staffe.	
	OK Annulla

Fig. 15.10 - Finestra opzioni, scheda Armatura.

15.3.2 Sezione Carichi Fissi

• Incidenza Muratura. Spuntando questa voce si abilita l'inserimento del sovraccarico dovuto alla presenza della muratura. Successivamente è possibile scegliere di inserire le dimensioni ed il peso specifico del muro o, in alternativa, direttamente il valore del carico distribuito.

Opzioni Telaio Pi	ano			×
Armatura Cario	chi Fissi Quotature			
C Incidenza	Muratura hetria Altezza n] [300 [cm]	Spessore	Peso Specifico [kg/m²] 1000	
Peso	Peso Distribuito	[kg/m] 800		
Selezionare gli e	lementi da computare.	((DK Annulk	3

Fig. 15.11 - Finestra opzioni, scheda Carichi Fissi.

15.3.3 Sezione Quotature

- Altezza del font per i titoli. Altezza da dare al font per il testo nelle intestazioni.
- Altezza del font per le indicazioni. Altezza da dare al font per il testo nelle indicazioni.
- Altezza del font per quotatura ferri. Altezza da dare al font per il testo nelle intestazioni.

Opzioni Telaio Piano ×
Armatura Carichi Fissi Quotature
Dimensioni testo
[mm] 14 Altezza del font per i titoli.
[mm] 10 Altezza del font per le indicazioni.
[mm] 8 Altezza del font per la quotatura dei ferri.
OK Annulla

Fig. 15.12 - Finestra opzioni, scheda Quotature.

15.4 Esempio di calcolo di un telaio piano

Calcolo e verifica agli Stati Limite di un telaio piano di 4 ritti e 3 impalcati. Sono utilizzati calcestruzzo di classe Rck 300 e barre del tipo Feb44k.

ELABORATI GRAFICI PRODOTTI:

TABELLA DEI PILASTRI

Fig. 15.15 - Sezioni e armature dei ritti.

RELAZIONE DI CALCOLO

TELAIO PIANO IN C.A. Metodo di verifica: Stati Limite

DATI GEOMETRICI ED ELASTICI

Copriferro	[cm]	3
Coeff. di omogeneizzazione		15
Classe di resistenza del calcestruzzo (R _{ck})	[kg/cm ²]	300

Resistenza caratteristica del cls (f _{ck})	[kg/cm ²]	249
Resistenza di calcolo del cls (α ·f _{cd})	[kg/cm ²]	132,3
Tipo di acciaio		Fe B44k
Tensione caratteristica di snervamento (f _{yk})	[kg/cm ²]	4300
Resistenza di calcolo dell'acciaio (f _{yd})	[kg/cm ²]	3739,1

ALTEZZA DEI PIANI

Piano	Altezza
n.	[cm]
1	400
2	330
3	330

LUCI E SEZIONI DELLE TRAVI

Trave	Piano	Luce [cm]	Base [cm]	Altezza [cm]	Inerzia [m4]
1-2	1	505	30	40	0,001600
1-2	2	505	30	40	0,001600
1-2	3	505	80	30	0,001800
2-3	1	640	30	40	0,001600
2-3	2	640	30	40	0,001600
2-3	3	640	80	30	0,001800
3-4	1	440	30	40	0,001600
3-4	2	440	30	40	0,001600
3-4	3	440	80	30	0,001800

GEOMETRIA DEI PILASTRI E PESO PROPRIO

Ritto	Piano	Base [cm]	Altezza [cm]	Inerzia [m ⁴]	PP(G _k) [kg]	PP(G _d) [kg]
1	1	60	30	0,001350	1800	2520
1	2	50	30	0,001125	1238	1733
1	3	40	30	0,000900	990	1386
2	1	30	60	0,005400	1800	2520
2	2	30	40	0,001600	990	1386
2	3	30	40	0,001600	990	1386
3	1	30	60	0,005400	1800	2520
3	2	30	40	0,001600	990	1386
3	3	30	40	0,001600	990	1386
4	1	30	50	0,003125	1500	2100
4	2	30	40	0,001600	990	1386
4	3	30	40	0,001600	990	1386

CARICHI VERTICALI

Trave	Piano	G _{k perm.} [kg/m]	Q _{k var.} [kg/m]	G _{d perm.} [kg/m]	Q _{d var.} [kg/m]
1-2	1	300	3000	420	4500
1-2	2	300	3000	420	4500
1-2	3	600	3000	840	4500
2-3	1	300	3000	420	4500
2-3	2	300	3000	420	4500
2-3	3	600	3000	840	4500
3-4	1	300	3000	420	4500
3-4	2	300	3000	420	4500
3-4	3	600	3000	840	4500

MOMENTI NEI NODI

Ritto	Piano	Mom.(G _k) [kgm]	Mom.(G _d) [kgm]
1	1	300	420
1	2	0	0
1	3	0	0
2	1	0	0
2	2	0	0
2	3	500	700
3	1	0	0
3	2	500	700
3	3	0	0
4	1	600	840
4	2	0	0
4	3	0	0

FORZE ORIZZONTALI

Piano	Forza (G _k) [kg]	Forza (G _d) [kg]
1	0	0
2	1200	1680
3	3000	4200
3	3000	4200

 G_k , Q_k : valori caratteristici delle azioni permanente e variabile. G_d , Q_d : valori di calcolo delle azioni permanente e variabile.

SPOSTAMENTO DEGLI IMPALCATI

Spostamento [mm]
1,55
4,08
5,88

CARATTERISTICHE DI SOLLECITAZIONE NELLE TRAVI

Trave	Piano	Mom. Sin. [tm]	Mom. Des. [tm]	Taglio Sin. [t]	Taglio Des. [t]
1-2	1	-2,095	-11,187	6,532	-10,133
1-2	2	-2,532	-10,992	6,657	-10,008
1-2	3	-2,159	-11,758	7,189	-10,991
2-3	1	-9,013	-13,059	9,928	-11,192
2-3	2	-9,146	-12,757	9,996	-11,124
2-3	3	-11,061	-12,593	11,281	-11,759
3-4	1	-3,413	-7,197	6,400	-8,120
3-4	2	-3,591	-7,528	6,365	-8,155
3-4	3	-6,808	-4,704	8,398	-7,442

CARATTERISTICHE DI SOLLECITAZIONE NEI PILASTRI

Ritto	Piano	Mom. Sup. [tm]	Mom. Inf. [tm]	Taglio [t]	Sforzo N. [t]
1	1	-1,576	-0,435	-0,285	-26,017
1	2	-0,696	0,939	-0,496	-16,965
1	3	-2,159	1,836	-1,211	-8,575
2	1	0,042	-4,912	1,238	-67,627
2	2	1,688	-1,712	1,030	-45,047
2	3	0,697	-0,158	0,259	-23,657
3	1	4,957	-7,369	3,082	-60,531
3	2	4,995	-4,690	2,935	-40,419
3	3	5,086	-4,171	2,805	-21,544
4	1	3,033	-4,347	1,845	-28,589
4	2	3,790	-4,164	2,410	-18,369
4	3	4,704	-3,038	2,346	-8,828

VERIFICA SEZIONI MAGGIORMENTE SOLLECITATE NELLE TRAVI

Verifica allo S.L.U.

Momento massimo positivo (piano 3, trave 2)	[kgm]	15518,9
Armatura necessaria inferiore	[cm ²]	17,1 (6ø18+1ø22)
Armatura superiore	[cm ²]	10,2 (4ø18)
Asse neutro (x/d = 0,21 < 0,45)	[cm]	5,7
Momento resistente ultimo (M _{Rd})	[kgm]	17456,3
Momento massimo negativo (piano 1, trave 2, app.3)	[kgm]	-13059,4
Armatura necessaria superiore	[cm ²]	10,5 (5ø18)
Armatura inferiore	[cm ²]	14,0 (4ø18+1ø22)
Asse neutro ($x/d = 0,17 < 0,45$)	[cm]	6,2
Momento resistente ultimo (M _{Rd})	[kgm]	16288,8
Taglio massimo (piano 3, trave 2, app.3)	[kg]	-11759,4
Armatura staffe	[cm ² /m]	12,00 (ø8/8 cm)
Armatura ferri di parete	[cm ²]	1,6 (1+1ø12)
Resistenza a taglio del cls non armato (V _{Rd1})	[kg]	11085,9
Resistenza a taglio bielle di cls compresse (V _{Rd2})	[kg]	85718,3
Resistenza con armatura a taglio (V_{Rd3})	[kg]	151072,0

Verifica S.L.E. per comb. rara e quasi permanente (piano 1, trave 2, app.3)

Momento massimo (comb. rara)	[kgm]	-8854,7
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	75,4 < 149,4
Tensione nel ferro (comb. rara) (σ_s)	[kg/cm ²]	1914,4 < 3010
Momento massimo (comb. quasi perm.)	[kgm]	-4215,4
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	35,9 < 112,1
Tensione nel ferro (comb. quasi perm.) (σ _s)	[kg/cm ²]	911,4 < 2150
Momento di fessurazione (comb. rara) (M _f)	[kgm]	897,4 < 8854,7
Ampiezza delle fessure (comb. rara) (W _k)	[mm]	0,08 < 0,3

Verifica S.L.E. per comb. rara e quasi permanente (piano 3, trave 2)

Momento massimo (comb. rara) Tensione nel cls (comb. rara) (σ_c) Tensione nel ferro (comb. rara) (σ_s) Momento massimo (comb. quasi perm.) Tensione nel cls (comb. quasi perm.) (σ_c) Tensione nel ferro (comb. quasi perm.) (σ_s) Momento di fessurazione (comb. rara) (M_f) Ampiezza delle fessure (comb. rara) (W_c)	[kgm] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kg/cm ²] [kgm] [mm]	10522,3 88,6 < 149,4 2320,3 < 3010 5009,3 42,2 < 112,1 1104,6 < 2150 1634,2 < 10522,3 0.09 < 0.3
Ampiezza delle fessure (comb. rara) (W _k)	[mm]	0,09 < 0,3
	[]	0,05 0,0

Verifica allo stato limite di deformazione (piano 1, trave 2)

Abbassamento max per comb. rara	[mm]	22,3
Abbassamento max per comb. quasi perm.	[mm]	10,6

PROSPETTO ARMATURA TRAVI (con ferri dritti)

PIANO 1

					Ann	Monconi
Camp.	Arm. inf.	Ferri Parete	Arm. sup.	Staffe	App.	Moncom

		sin	des		sin	des	1	
1	3ø18	2ø12	2ø12	2ø18	a8/22"	a8/22"	1	
1	5010	2012	2012	2010	00/22	00722	2	
2	1a18±1a22	2a12	2a12	3018	a8/22"	ag /22"	2	
2	4010+1022	2012	2012	5010	00/22	00/22	2	
2	2a10+1a22	2412	2412	2a10	a0/22"	a0 /22"	3	
5	2010+1022	2012	2012	2010	Ø0/22	Ø0/22	1.	1a18
							-	1010

PIANO 2

Comm	A	Ferri Parete	A	Sta	ffe	App.	Monconi
Camp.	Arm. Inf.	sin des	Arm. sup.	sin	des	1	
1	3a18	2a12 2a12	2ø18	a8/22"	a8/22"	1	
1	5010		2010	00/22	00/22	2	
2	4ø18+1ø22	2012 2012	3ø18	ø8/22"	ø8/22"	4	
	1010-1022		5010	00/22	00/22	3	
3	2ø18+1ø22	2012 2012	2ø18	ø8/22"	ø8/22"	5	
5	2010.1022		2010	00/22	00/22	4	1ø18
						1	1,010

PIANO 3

6	A	Ferri Pa	arete		Sta	lffe	App.	Monconi
Camp.	Arm. inf.	sin	des	Arm. sup.	sin	des	1	
1	4ø18+1ø22	2ø12	2ø12	3ø18	a8/8"	a8/8"	1	
	101011022		2012	5010	0070	0070	2	
2	6ø18+1ø22	2ø12	2ø12	4ø18	ø8/8"	ø8/8"	-	
	0010-1022	2,012	2,912	1,010	<i>p</i> 070	<i>p</i> 070	3	
3	3018+1022	2a12	2ø12	2ø18	a8/8"	a8/8"	0	
5	501011022	2012	2012	2010	0070	0070	4	1ø18
							Т	1010

VERIFICA SEZIONI MAGGIORMENTE SOLLECITATE NEI PILASTRI

Verifica allo S.L.U. (ritto 2, piano 1)

Sforzo normale	[kg]	-67627,5
Momento flettente	[kgm]	-4911,8
Armatura necessaria	[cm ²]	5,4 (4ø16)
Asse neutro	[cm]	58,2
Sforzo normale resistente ultimo (N _{Rd})	[kg]	202638,5
Momento resistente ultimo (M _{Rd})	[kgm]	14717,6

Verifica stato limite tensioni di esercizio (ritto 2, piano 1)

Tensione limite per comb. di carico rara	$(\sigma_{c lim} = 149.4 kg/cm^2)$
Tensione limite per comb. di carico quasi perman.	$(\sigma_{c lim} = 112,1 \text{ kg/cm}^2)$

Sforzo normale per comb. di carico rara (N _{d rara})	[kg]	-45853,8
Sforzo normale per comb. di carico quasi perm.(N _d	[kg]	-21829,1
Tensione nel cls (comb. rara) (σ_c)	[kg/cm ²]	23,9 < 149,4
Tensione nel cls (comb. quasi perm.) (σ_c)	[kg/cm ²]	11,4 < 112,1

ARMATURA	PILASTRI				
Pia - Pil	Sforzo N [kg]	A _f [cm ²]	Sezione [cmxcm]	Armatura	Staffe
3 - 1	-8.575	3,6	40x30	4ø16	ø8/19 cm
3 - 2	-23.657	3,6	30x40	4ø16	ø8/19 cm
3 - 3	-21.544	3,6	30x40	4ø16	ø8/19 cm
3 - 4	-8.828	3,6	30x40	4ø16	ø8/19 cm
2 - 1	-16.965	4,5	50x30	4ø16	ø8/19 cm
2 - 2	-45.047	3,6	30x40	4ø16	ø8/19 cm
2 - 3	-40.419	3,6	30x40	4ø16	ø8/19 cm
2 - 4	-18.369	3,6	30x40	4ø16	ø8/19 cm
1 - 1	-26.017	5,4	60x30	4ø16	ø8/19 cm
1 - 2	-67.627	5,4	30x60	4ø16	ø8/19 cm
1 - 3	-60.531	5,4	30x60	4ø16	ø8/19 cm
1 - 4	-28.589	4,5	30x60	4ø16	ø8/19 cm

COMPUTO MATERIALI

Armatura (Fe B 44 k controllato)	[kg]	1503
Calcestruzzo (R _{ck} =300)	[m ³]	13,16
Percentuale di armatura in peso	[%]	4,57
Incidenza peso armatura sul volume cls	[kg/m ³]	114,20